We consider a nonlinear eigenvalue problem for equations driven by a weighted (p,q)-Laplacian and a superlinear reaction. We prove a global (with respect to the parameter λ>0) existence and multiplicity result. We also generate nodal (sign-changing) solutions. Finally, we determine the topological properties of the solution set and prove the continuity properties of the solution multifunction.

Positive and nodal solutions for parametric superlinear weighted (p,q)-equations

Scapellato A.
2023-01-01

Abstract

We consider a nonlinear eigenvalue problem for equations driven by a weighted (p,q)-Laplacian and a superlinear reaction. We prove a global (with respect to the parameter λ>0) existence and multiplicity result. We also generate nodal (sign-changing) solutions. Finally, we determine the topological properties of the solution set and prove the continuity properties of the solution multifunction.
2023
Comparison principle
Maximum principle
Nonlinear regularity
Positive and nodal solutions
Solution multifunction
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1468121822001699-main.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 806.51 kB
Formato Adobe PDF
806.51 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/551682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact