Mal secco is a severe vascular citrus disease (MSD) caused by the mitosporic fungus Plenodomus tracheiphilus (Pt). The pathogen enters through wounds on the above- and below-ground parts of the tree. The susceptible species sour orange (Citrus aurantium) is the most commonly used rootstock for lemon trees in Italy. In this study, sour orange seedlings were wound-inoculated with P. tracheiphilus in leaves or roots. Six months post-inoculation, the microbial communities of rhizosphere, endorhizosphere, and xylem endosphere samples from inoculated and healthy plants were analyzed by 16S rRNA and ITS (internal transcribed spacer) amplicon sequencing. The DNA of Pt was quantified by real-time PCR in the three compartments. According to our results, the endorhizosphere of root-inoculated plants showed the highest concentration of the pathogen DNA. Bacterial populations of potentially beneficial taxa (e.g., Pseudomonas and Burkholderia) were depleted in the rhizosphere of the inoculated plants. Infection through leaves and roots also produced a network-wide rewiring of microbial associations in sour orange roots. Overall, our findings revealed community-level changes induced by Pt infection in the sour orange root and xylem microbiome, providing further insights into the beneficial multispecies interactions in Citrus-associated microbial communities
Sour Orange Microbiome Is Affected by Infections of Plenodomus tracheiphilus Causal Agent of Citrus Mal Secco Disease
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Dimaria, Giulio;Mosca, Alexandros;Anzalone, Alice;Nicotra, Daniele;Privitera, Grete Francesca;Pulvirenti, Alfredo;Catara, Vittoria
	
		
		
	
			2023-01-01
Abstract
Mal secco is a severe vascular citrus disease (MSD) caused by the mitosporic fungus Plenodomus tracheiphilus (Pt). The pathogen enters through wounds on the above- and below-ground parts of the tree. The susceptible species sour orange (Citrus aurantium) is the most commonly used rootstock for lemon trees in Italy. In this study, sour orange seedlings were wound-inoculated with P. tracheiphilus in leaves or roots. Six months post-inoculation, the microbial communities of rhizosphere, endorhizosphere, and xylem endosphere samples from inoculated and healthy plants were analyzed by 16S rRNA and ITS (internal transcribed spacer) amplicon sequencing. The DNA of Pt was quantified by real-time PCR in the three compartments. According to our results, the endorhizosphere of root-inoculated plants showed the highest concentration of the pathogen DNA. Bacterial populations of potentially beneficial taxa (e.g., Pseudomonas and Burkholderia) were depleted in the rhizosphere of the inoculated plants. Infection through leaves and roots also produced a network-wide rewiring of microbial associations in sour orange roots. Overall, our findings revealed community-level changes induced by Pt infection in the sour orange root and xylem microbiome, providing further insights into the beneficial multispecies interactions in Citrus-associated microbial communities| File | Dimensione | Formato | |
|---|---|---|---|
| Sour Orange Microbiome.pdf accesso aperto 
											Descrizione: Articolo
										 
											Tipologia:
											Versione Editoriale (PDF)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										2.54 MB
									 
										Formato
										Adobe PDF
									 | 2.54 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


