Disruption of the ground communication infrastructure in emergency scenarios makes post-disaster rescue operations very complicate. This paper proposes to use edge intelligence to support rescue operators in managing these emergency scenarios. A set of Unmanned Aerial Vehicles (UAV), organized as Flying Ad-Hoc network (FANET), autonomously takeoff and land to provide emergency operators with edge computing services. A charging station for batteries is supplied by a renewable-energy generator. The FANET Controller applies model-based Reinforcement Learning to decide how many UAVs have to take off, according to the current edge-computing service requests and the power availability, and a forecast of them. The optimal management policy has to provide the necessary level of edge-computing avoiding wide use of satellite channels in a short-time horizon during low green-energy generation and high service request periods. Results highlight that the optimal policy is an efficient modification of the greedy one, i.e. the policy enabling the takeoff of all the necessary UAVs without being care of challenging events in the future. A deep analysis has revealed that the level of modification depends on the combination of the edge-computing service request and the green power availability.

Green edge intelligence for smart management of a FANET in disaster-recovery scenarios

Faraci G.;Rizzo S. A.;Schembra G.
2023-01-01

Abstract

Disruption of the ground communication infrastructure in emergency scenarios makes post-disaster rescue operations very complicate. This paper proposes to use edge intelligence to support rescue operators in managing these emergency scenarios. A set of Unmanned Aerial Vehicles (UAV), organized as Flying Ad-Hoc network (FANET), autonomously takeoff and land to provide emergency operators with edge computing services. A charging station for batteries is supplied by a renewable-energy generator. The FANET Controller applies model-based Reinforcement Learning to decide how many UAVs have to take off, according to the current edge-computing service requests and the power availability, and a forecast of them. The optimal management policy has to provide the necessary level of edge-computing avoiding wide use of satellite channels in a short-time horizon during low green-energy generation and high service request periods. Results highlight that the optimal policy is an efficient modification of the greedy one, i.e. the policy enabling the takeoff of all the necessary UAVs without being care of challenging events in the future. A deep analysis has revealed that the level of modification depends on the combination of the edge-computing service request and the green power availability.
2023
5G
Autonomous aerial vehicles
Batteries
Data centers
Edge computing
Emergency Networks
Energy-Aware Networks
Green Edge Intelligence
Green products
Reinforcement learning
Reinforcement Learning
Satellites
UAV
File in questo prodotto:
File Dimensione Formato  
Green_Edge_Intelligence_for_Smart_Management_of_a_FANET_in_Disaster-Recovery_Scenarios.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/551984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact