Surface temperature (T-s) is an essential parameter in many land surface processes. When T-s is obtained from remotely sensed satellite data the consideration of atmospheric correction may be needed to obtain accurate surface temperature estimates. Most atmospheric correction methods adjust atmospheric transmissivity, path radiance and downward thermal radiation coefficients. Following a standardized atmospheric correction of Landsat 7 thermal data, some differences were found between these corrected data and surface temperature derived from very-high resolution airborne thermal data. Five different methods for determining atmospheric correction were evaluated comparing atmospherically corrected Landsat 7 data with airborne data for an area of olive orchards located at Southern Spain. When using standard default Landsat 7 calibration coefficients T-s differences between satellite and airborne observations ranged from 1 to 6 K, highlighting the need to perform more robust atmospheric correction. When applying the customized values for semi-arid temperate climate in Idaho, USA, and the values based on the National Centers for Environmental Prediction (NCEP) T-s differences ranged from 1 to 4 K, indicating that additional local calibration may be appropriate. Optimal coefficients were determined using the Generalized Reduced Gradient (GRG) approach, a nonlinear algorithm included in Solver tool, obtaining T-s differences around 1-3 K. In order to evaluate the impact of considering the proposed correction approaches, assessment of the evapotranspiration and crop coefficient values derived from the Mapping Evapotranspiration with Internalized Calibration (METRIC) energy balance model provided maximum errors of around 4%, indicating that the METRIC model does not require a robust atmospheric correction. However, the localized calibration approaches are proposed as useful alternatives when absolute land surface temperatures values are required, as in the case of the determination of crop water stress based on differences between canopy (T-c) and air temperature (T-air).

Evaluating the impact of adjusting surface temperature derived from Landsat 7 ETM+ in crop evapotranspiration assessment using high-resolution airborne data

J. M. Ramirez-Cuesta;
2017-01-01

Abstract

Surface temperature (T-s) is an essential parameter in many land surface processes. When T-s is obtained from remotely sensed satellite data the consideration of atmospheric correction may be needed to obtain accurate surface temperature estimates. Most atmospheric correction methods adjust atmospheric transmissivity, path radiance and downward thermal radiation coefficients. Following a standardized atmospheric correction of Landsat 7 thermal data, some differences were found between these corrected data and surface temperature derived from very-high resolution airborne thermal data. Five different methods for determining atmospheric correction were evaluated comparing atmospherically corrected Landsat 7 data with airborne data for an area of olive orchards located at Southern Spain. When using standard default Landsat 7 calibration coefficients T-s differences between satellite and airborne observations ranged from 1 to 6 K, highlighting the need to perform more robust atmospheric correction. When applying the customized values for semi-arid temperate climate in Idaho, USA, and the values based on the National Centers for Environmental Prediction (NCEP) T-s differences ranged from 1 to 4 K, indicating that additional local calibration may be appropriate. Optimal coefficients were determined using the Generalized Reduced Gradient (GRG) approach, a nonlinear algorithm included in Solver tool, obtaining T-s differences around 1-3 K. In order to evaluate the impact of considering the proposed correction approaches, assessment of the evapotranspiration and crop coefficient values derived from the Mapping Evapotranspiration with Internalized Calibration (METRIC) energy balance model provided maximum errors of around 4%, indicating that the METRIC model does not require a robust atmospheric correction. However, the localized calibration approaches are proposed as useful alternatives when absolute land surface temperatures values are required, as in the case of the determination of crop water stress based on differences between canopy (T-c) and air temperature (T-air).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/552472
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact