Climate change will intensify water scarcity, and therefore irrigation must be adapted to save water. Operational tools that provide watering recommendations to end-users are needed. This work presents a new tool, Irrigation-Advisor (IA), which is based on weather forecasts and is able to separately determine soil evaporation and crop transpiration, and thus is adaptable to a broad range of agricultural situations. By calculating several statistical indicators, IA was tested against the FAO-56 crop evapotranspiration (ET(c)FAO) methodology using local crop coefficients. Additionally, IA recommendations were compared with current standard practices by experienced farmers (F). Six field experiments with four widely cultivated species (endive, lettuce, muskmelon and potato) were performed in Southeast Spain. Irrigation water applied, crop yield, aboveground biomass and water productivity were determined. Crop water needs underestimations (5%-20%) were detected when comparing IA against ET(c)FAO, although the index of agreement proved reasonable adjustments. The IA recommendations led to water savings up to 13% when compared to F, except for lettuce, with a 31% surplus in irrigation when using IA. Crop yield was not compromised and water productivity was increased by IA. Therefore, IA mimicked the farmers' irrigation strategies fairly well without deploying sensors on-site. Nevertheless, improvements are needed for increasing the accuracy of IA estimations.

Irrigation-Advisor—A Decision Support System for Irrigation of Vegetable Crops

Juan Ramirez-Cuesta;
2019-01-01

Abstract

Climate change will intensify water scarcity, and therefore irrigation must be adapted to save water. Operational tools that provide watering recommendations to end-users are needed. This work presents a new tool, Irrigation-Advisor (IA), which is based on weather forecasts and is able to separately determine soil evaporation and crop transpiration, and thus is adaptable to a broad range of agricultural situations. By calculating several statistical indicators, IA was tested against the FAO-56 crop evapotranspiration (ET(c)FAO) methodology using local crop coefficients. Additionally, IA recommendations were compared with current standard practices by experienced farmers (F). Six field experiments with four widely cultivated species (endive, lettuce, muskmelon and potato) were performed in Southeast Spain. Irrigation water applied, crop yield, aboveground biomass and water productivity were determined. Crop water needs underestimations (5%-20%) were detected when comparing IA against ET(c)FAO, although the index of agreement proved reasonable adjustments. The IA recommendations led to water savings up to 13% when compared to F, except for lettuce, with a 31% surplus in irrigation when using IA. Crop yield was not compromised and water productivity was increased by IA. Therefore, IA mimicked the farmers' irrigation strategies fairly well without deploying sensors on-site. Nevertheless, improvements are needed for increasing the accuracy of IA estimations.
2019
evapotranspiration
modeling
soil water balance
water-use efficiency
weather forecasts
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/552480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact