Implantology, prosthodontics, and orthodontics in all their variants, are medical and rehabilitative medical fields that have greatly benefited from bioengineering devices of investigation to improve the predictability of clinical rehabilitations. The finite element method involves the simulation of mechanical forces from an environment with infinite elements, to a simulation with finite elements. This editorial aims to point out all the progress made in the field of bioengineering and medicine. Instrumental investigations, such as finite element method (FEM), are an excellent tool that allows the evaluation of anatomical structures and any facilities for rehabilitation before moving on to experimentation on animals, so as to have mechanical characteristics and satisfactory load cycle testing. FEM analysis contributes substantially to the development of new technologies and new materials in the biomedical field. Thanks to the 3D technology and to the reconstructions of both the anatomical structures and eventually the alloplastic structures used in the rehabilitations it is possible to consider all the mechanical characteristics, so that they could be analyzed in detail and improved where necessary.

Bioengineering Methods of Analysis and Medical Devices: A Current Trends and State of the Art

Cicciu M.
2020-01-01

Abstract

Implantology, prosthodontics, and orthodontics in all their variants, are medical and rehabilitative medical fields that have greatly benefited from bioengineering devices of investigation to improve the predictability of clinical rehabilitations. The finite element method involves the simulation of mechanical forces from an environment with infinite elements, to a simulation with finite elements. This editorial aims to point out all the progress made in the field of bioengineering and medicine. Instrumental investigations, such as finite element method (FEM), are an excellent tool that allows the evaluation of anatomical structures and any facilities for rehabilitation before moving on to experimentation on animals, so as to have mechanical characteristics and satisfactory load cycle testing. FEM analysis contributes substantially to the development of new technologies and new materials in the biomedical field. Thanks to the 3D technology and to the reconstructions of both the anatomical structures and eventually the alloplastic structures used in the rehabilitations it is possible to consider all the mechanical characteristics, so that they could be analyzed in detail and improved where necessary.
2020
Bioengineering
Biomaterials
Biomedical
Biotechnologies
Dentistry
Finite element analysis
Materials
Methods
Von mises
File in questo prodotto:
File Dimensione Formato  
materials-13-00797.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/552546
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact