Aim: This case report aims to illustrate a clinical protocol that allows for the rehabilitation of patients requiring extensive osteotomy, simultaneous implant placement, and full-arch, screwed-in prosthetics in one session. This protocol allows for the improvement of the aesthetics and functionality of the fixed implant-supported prosthesis through the preoperative planning of all surgical procedures, including osteotomy, and of the prosthesis through the application of 3D-printing technology for the creation of surgical templates and prostheses. Methods: This case report concerns a 72-year-old patient, ASA1, who, following diagnosis, the establishment of a treatment plan, and the provision of informed consent, opted for an immediate, full-arch rehabilitation of the lower arch. The digital planning stage started with the correct positioning of the fixtures. The proper bone levels were found and used to guide the creation of the provisional screwed-in prothesis. Two templates with the same supports (landmarks/pins) were then 3D-printed: a positioning template, including a slit to assist the surgeon during the osteotomy, and a surgery template to assist the surgeon during the implants’ positioning. A screwed-in prosthesis encased in resin C&B MFH (NEXTDENT®, Soesterberg, The Netherlands) was delivered. Minimal occlusal adjustments were performed. Results: In a single clinical session, through careful planning and the pre-operative 3D printing of a prosthesis, a temporary implant-supported prosthetic rehabilitation was possible in a case that required an extended osteotomy. Clinically, the correspondence between the virtual design phase and the final realization was consistent. At a functional level, the provisional prosthesis required minimal occlusal adjustments and the DVO values obtained in the immediate post-operative period were found to be comparable to those of the virtual design. By planning the final position of the bone and the implants in advance, it was possible to deliver a full-arch prothesis with proper implant emergence, occlusal vertical dimensions, and occlusal relationship. Conclusion: This fully digital protocol allows the clinician to preview and plan the osteotomy and implant surgery as well as the delivery of the temporary, immediately loaded, complete, fixed prosthesis in patients who are candidates for post-extraction surgery with the need for severe osteotomy.

Computer-Guided Osteotomy with Simultaneous Implant Placement and Immediately Loaded Full-Arch Fixed Restoration: A Case Report

Isola G.
Formal Analysis
;
2023-01-01

Abstract

Aim: This case report aims to illustrate a clinical protocol that allows for the rehabilitation of patients requiring extensive osteotomy, simultaneous implant placement, and full-arch, screwed-in prosthetics in one session. This protocol allows for the improvement of the aesthetics and functionality of the fixed implant-supported prosthesis through the preoperative planning of all surgical procedures, including osteotomy, and of the prosthesis through the application of 3D-printing technology for the creation of surgical templates and prostheses. Methods: This case report concerns a 72-year-old patient, ASA1, who, following diagnosis, the establishment of a treatment plan, and the provision of informed consent, opted for an immediate, full-arch rehabilitation of the lower arch. The digital planning stage started with the correct positioning of the fixtures. The proper bone levels were found and used to guide the creation of the provisional screwed-in prothesis. Two templates with the same supports (landmarks/pins) were then 3D-printed: a positioning template, including a slit to assist the surgeon during the osteotomy, and a surgery template to assist the surgeon during the implants’ positioning. A screwed-in prosthesis encased in resin C&B MFH (NEXTDENT®, Soesterberg, The Netherlands) was delivered. Minimal occlusal adjustments were performed. Results: In a single clinical session, through careful planning and the pre-operative 3D printing of a prosthesis, a temporary implant-supported prosthetic rehabilitation was possible in a case that required an extended osteotomy. Clinically, the correspondence between the virtual design phase and the final realization was consistent. At a functional level, the provisional prosthesis required minimal occlusal adjustments and the DVO values obtained in the immediate post-operative period were found to be comparable to those of the virtual design. By planning the final position of the bone and the implants in advance, it was possible to deliver a full-arch prothesis with proper implant emergence, occlusal vertical dimensions, and occlusal relationship. Conclusion: This fully digital protocol allows the clinician to preview and plan the osteotomy and implant surgery as well as the delivery of the temporary, immediately loaded, complete, fixed prosthesis in patients who are candidates for post-extraction surgery with the need for severe osteotomy.
2023
3D printing
accuracy
computer-guided surgery
dental implants
digital workflow
osteotomy
File in questo prodotto:
File Dimensione Formato  
Todaro et al Prosthesis 2023_compressed.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/554843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact