The design of alternative biodegradable polymers has the potential of severely reducing the environmental impact, cost and production time currently associated with the petrochemical industry. In fact, growing demand for renewable feedstock has recently brought to the fore synthetic biology and metabolic engineering. These two interdependent research areas focus on the study of microbial conversion of organic acids, with the aim of replacing their petrochemical-derived equivalents with more sustainable and efficient processes. The particular case of Lactic acid (LA) production has been the subject of extensive research because of its role as an essential component for developing an eco-friendly biodegradable plastic-widely used in industrial biotechnological applications. Because of its resistance to acidic environments, among the many LA-producing microbes, Saccharomyces cerevisiae has been the main focus of research into related biocatalysts. In this study, we present an extensive in silico investigation of S. cerevisiae cell metabolism (modeled with Flux Balance Analysis) with the overall aim of maximizing its LA production yield. We focus on the yeast 8.3 steady-state metabolic model and analyze it under the impact of different engineering strategies including: gene knock-in, gene knock-out, gene regulation and medium optimization; as well as a comparison between results in aerobic and anaerobic conditions. We designed ad-hoc constrained multiobjective evolutionary algorithms to automate the engineering process and developed a specific postprocessing methodology to analyze the genetic manipulation results obtained. The in silico results reported in this paper empirically show that our method is able to automatically select a small number of promising genetic and metabolic manipulations, deriving competitive strains that promise to impact microorganisms design in the production of sustainable chemicals.

L‐lactate production in engineered Saccharomyces cerevisiae using a multistage multiobjective automated design framework

Matteo N. Amaradio;Giorgio Jansen;Jole Costanza;Giuseppe Nicosia
2023-01-01

Abstract

The design of alternative biodegradable polymers has the potential of severely reducing the environmental impact, cost and production time currently associated with the petrochemical industry. In fact, growing demand for renewable feedstock has recently brought to the fore synthetic biology and metabolic engineering. These two interdependent research areas focus on the study of microbial conversion of organic acids, with the aim of replacing their petrochemical-derived equivalents with more sustainable and efficient processes. The particular case of Lactic acid (LA) production has been the subject of extensive research because of its role as an essential component for developing an eco-friendly biodegradable plastic-widely used in industrial biotechnological applications. Because of its resistance to acidic environments, among the many LA-producing microbes, Saccharomyces cerevisiae has been the main focus of research into related biocatalysts. In this study, we present an extensive in silico investigation of S. cerevisiae cell metabolism (modeled with Flux Balance Analysis) with the overall aim of maximizing its LA production yield. We focus on the yeast 8.3 steady-state metabolic model and analyze it under the impact of different engineering strategies including: gene knock-in, gene knock-out, gene regulation and medium optimization; as well as a comparison between results in aerobic and anaerobic conditions. We designed ad-hoc constrained multiobjective evolutionary algorithms to automate the engineering process and developed a specific postprocessing methodology to analyze the genetic manipulation results obtained. The in silico results reported in this paper empirically show that our method is able to automatically select a small number of promising genetic and metabolic manipulations, deriving competitive strains that promise to impact microorganisms design in the production of sustainable chemicals.
2023
L-lactate production
Pareto optimality
gene regulation optimization
genetic manipulation optimization
medium optimization
metabolic engineering
File in questo prodotto:
File Dimensione Formato  
Saccharomy cescerevisiae.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.68 MB
Formato Adobe PDF
3.68 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/555943
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact