By using fixed point theorem, fractional calculus and stochastic analysis, sufficient conditions for existence solutions of non-instantaneous impulsive Hilfer-Katugampola fractional differential equations of order 1/2 < α < 1 and parameter 0 ≤ β ≤ 1 with fractional Brownian motion, Poisson jumps, and with nonlocal conditions are established.

On some non-instantaneous impulsive differential equations with fractional brownian motion and Poisson jumps

MARIA ALESSANDRA RAGUSA
2023-01-01

Abstract

By using fixed point theorem, fractional calculus and stochastic analysis, sufficient conditions for existence solutions of non-instantaneous impulsive Hilfer-Katugampola fractional differential equations of order 1/2 < α < 1 and parameter 0 ≤ β ≤ 1 with fractional Brownian motion, Poisson jumps, and with nonlocal conditions are established.
2023
fractional Brownian motion, poisson jumps, Hilfer-Katugampola fractional deriva- tive, M onch fixed point theorem, stochastic differential equations.
File in questo prodotto:
File Dimensione Formato  
FROM_THE_WEB_11_APRIL_2023_ON SOME NON-INSTANTANEOUS IMPULSIVE_TWMS.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/556183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact