The synthesis of contaminant-free silver@linear carbon chains (Ag@LCCs) nanohybrid systems, at different Ag/LCCs ratios, by pulsed laser ablation was studied. The ablation products were first characterized by several diagnostic techniques: conventional UV-Vis optical absorption and micro-Raman spectroscopies, as well as scanning electron microscopy, operating in transmission mode. The experimental evidence was confirmed by the theoretical simulations' data. Furthermore, to gain a deeper insight into the factors influencing metal@LCCs biological responses in relation to their physical properties, in this work, we investigated the bioproperties of the Ag@LCCs nanosystems towards a wound-healing activity. We found that Ag@LCC nanohybrids maintain good antibacterial properties and possess a better capability, in comparison with Ag NPs, of interacting with mammalian cells, allowing us to hypothesize that mainly the Ag@LCCs 3:1 might be suitable for topical application in wound healing, independent of (or in addition to) the antibacterial effect.

Nano-Hybrid Ag@LCCs Systems with Potential Wound-Healing Properties

Corsaro, Carmelo;Condorelli, Marcello;Cimino, Francesco;Forte, Giuseppe;Spadaro, Salvatore;Toscano, Giovanni;D'Urso, Luisa;Compagnini, Giuseppe;Neri, Fortunato;Fazio, Enza
2023-01-01

Abstract

The synthesis of contaminant-free silver@linear carbon chains (Ag@LCCs) nanohybrid systems, at different Ag/LCCs ratios, by pulsed laser ablation was studied. The ablation products were first characterized by several diagnostic techniques: conventional UV-Vis optical absorption and micro-Raman spectroscopies, as well as scanning electron microscopy, operating in transmission mode. The experimental evidence was confirmed by the theoretical simulations' data. Furthermore, to gain a deeper insight into the factors influencing metal@LCCs biological responses in relation to their physical properties, in this work, we investigated the bioproperties of the Ag@LCCs nanosystems towards a wound-healing activity. We found that Ag@LCC nanohybrids maintain good antibacterial properties and possess a better capability, in comparison with Ag NPs, of interacting with mammalian cells, allowing us to hypothesize that mainly the Ag@LCCs 3:1 might be suitable for topical application in wound healing, independent of (or in addition to) the antibacterial effect.
2023
Ag nanoparticles
bioproperties
linear carbon chain
pulsed laser ablation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/557102
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact