Between 2020 and 2022, more than sixty lava fountains occurred at Mt. Etna (Italy), which formed high eruption columns rising up to 15 km above sea level (a.s.l.). During those events, several ballistics fell around the summit craters, sometimes reaching touristic areas. The rather frequent activity poses questions on how the impact associated with the fallout of those particles, can be estimated. In this work, we present field data collected soon after the lava fountain on 21 February 2022. This event produced a volcanic plume of about 10 km a.s.l. which was directed toward the southeast. Several ballistics fell in the area of the Barbagallo Craters (just southeast of the summit area at around 2900 m a.s.l.), which is one of the most popular touristic areas on Etna. Hence, we collected several samples and performed laboratory analyses in order to retrieve their size, shape and density. Those values together with a quantitative analysis of the lava fountain were compared with results obtained by a free-available calculator of ballistic trajectories named the ‘Eject!’. A similar approach was hence applied to other lava fountains of the 2020–2022 sequence for which the fallout of large clasts was reported. This work is a first step to identifying in near real-time the area affected by the fallout of ballistics during Etna lava fountains and quantifying their hazard.

Modeling the trajectories of ballistics in the summit area of Mt. Etna (Italy) during the 2020-2022 sequence of lava fountains

Marco Viccaro
Ultimo
2023-01-01

Abstract

Between 2020 and 2022, more than sixty lava fountains occurred at Mt. Etna (Italy), which formed high eruption columns rising up to 15 km above sea level (a.s.l.). During those events, several ballistics fell around the summit craters, sometimes reaching touristic areas. The rather frequent activity poses questions on how the impact associated with the fallout of those particles, can be estimated. In this work, we present field data collected soon after the lava fountain on 21 February 2022. This event produced a volcanic plume of about 10 km a.s.l. which was directed toward the southeast. Several ballistics fell in the area of the Barbagallo Craters (just southeast of the summit area at around 2900 m a.s.l.), which is one of the most popular touristic areas on Etna. Hence, we collected several samples and performed laboratory analyses in order to retrieve their size, shape and density. Those values together with a quantitative analysis of the lava fountain were compared with results obtained by a free-available calculator of ballistic trajectories named the ‘Eject!’. A similar approach was hence applied to other lava fountains of the 2020–2022 sequence for which the fallout of large clasts was reported. This work is a first step to identifying in near real-time the area affected by the fallout of ballistics during Etna lava fountains and quantifying their hazard.
2023
Mt. Etna (Italy), lava fountains, fallout of ballistics, Eject sofware, hazard from ballistics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/558289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact