We prove that several definitions of integral multilinear mappings given in the literature are equivalent. We show that what we call S-factorizable multilinear mappings are integral, but that the converse is not true (contrary to earlier claims). Using S-factorizable polynomials we give characterizations of ${\mathscr L}_\infty$-spaces, Asplund spaces, spaces not containing $\ell_1$, and spaces with the compact range property. Some of these characterizations seem to be new even for linear operators.
Integral and S-factorizable multilinear mappings
CILIA, Raffaela Giovanna;
2006-01-01
Abstract
We prove that several definitions of integral multilinear mappings given in the literature are equivalent. We show that what we call S-factorizable multilinear mappings are integral, but that the converse is not true (contrary to earlier claims). Using S-factorizable polynomials we give characterizations of ${\mathscr L}_\infty$-spaces, Asplund spaces, spaces not containing $\ell_1$, and spaces with the compact range property. Some of these characterizations seem to be new even for linear operators.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
		
			| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											S-factorizable.pdf
										
																				
									
										
											 solo gestori archivio 
											Tipologia:
											Versione Editoriale (PDF)
										 
									
									
									
									
										
											Licenza:
											
											
												Non specificato
												
												
												
											
										 
									
									
										Dimensione
										258.44 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								258.44 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


