We prove that several definitions of integral multilinear mappings given in the literature are equivalent. We show that what we call S-factorizable multilinear mappings are integral, but that the converse is not true (contrary to earlier claims). Using S-factorizable polynomials we give characterizations of ${\mathscr L}_\infty$-spaces, Asplund spaces, spaces not containing $\ell_1$, and spaces with the compact range property. Some of these characterizations seem to be new even for linear operators.

Integral and S-factorizable multilinear mappings

CILIA, Raffaela Giovanna;
2006

Abstract

We prove that several definitions of integral multilinear mappings given in the literature are equivalent. We show that what we call S-factorizable multilinear mappings are integral, but that the converse is not true (contrary to earlier claims). Using S-factorizable polynomials we give characterizations of ${\mathscr L}_\infty$-spaces, Asplund spaces, spaces not containing $\ell_1$, and spaces with the compact range property. Some of these characterizations seem to be new even for linear operators.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/55866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact