In California and Oregon, two recently described oomycete forest pathogens, Phytophthora nemorosa and P. pseudosyringae, overlap in their host and geographic ranges with the virulent P. ramorum, causal agent of ‘‘sudden oak death.’’ Epidemiological observations, namely broader geographic distribution and lack of landscape-level mortality, led to the hypothesis they are native to this region, whereas multiple lines of evidence indicate P. ramorum is exotic to North America. We used AFLP analysis to measure genetic variability in the homothallic P. nemorosa and P. pseudosyringae and to evaluate the hypothesis of endemism. We analysed 39 P. nemorosa and 48 P. pseudosyringae isolates (29 American and 19 European) from throughout their geographic and host ranges. In the US, both P. nemorosa and P. pseudosyringae have a dominant AFLP clone with several closely related variants. There is no evidence that genetic diversity is partitioned by host or location in P. nemorosa, but the US P. pseudosyringae clonal lineage is largely nested within a more genetically variable European group. Though the absence of highly variable sampled source populations does not allow us to determine whether each species is native or introduced in the western US with certainty, the results are most consistent with the hypothesis that both are introduced d P. pseudosyringae perhaps from Europe. Invasive Phytophthora species are increasingly being implicated in emergent forest diseases, highlighting the need to identify and characterize both native and previously unknown introduced forest Phytophthoras.
AFLPs detect low genetic diversity for Phytophthora nemorosa and P. pseudosyringae in the US and Europe
CACCIOLA, Santa Olga;
2009-01-01
Abstract
In California and Oregon, two recently described oomycete forest pathogens, Phytophthora nemorosa and P. pseudosyringae, overlap in their host and geographic ranges with the virulent P. ramorum, causal agent of ‘‘sudden oak death.’’ Epidemiological observations, namely broader geographic distribution and lack of landscape-level mortality, led to the hypothesis they are native to this region, whereas multiple lines of evidence indicate P. ramorum is exotic to North America. We used AFLP analysis to measure genetic variability in the homothallic P. nemorosa and P. pseudosyringae and to evaluate the hypothesis of endemism. We analysed 39 P. nemorosa and 48 P. pseudosyringae isolates (29 American and 19 European) from throughout their geographic and host ranges. In the US, both P. nemorosa and P. pseudosyringae have a dominant AFLP clone with several closely related variants. There is no evidence that genetic diversity is partitioned by host or location in P. nemorosa, but the US P. pseudosyringae clonal lineage is largely nested within a more genetically variable European group. Though the absence of highly variable sampled source populations does not allow us to determine whether each species is native or introduced in the western US with certainty, the results are most consistent with the hypothesis that both are introduced d P. pseudosyringae perhaps from Europe. Invasive Phytophthora species are increasingly being implicated in emergent forest diseases, highlighting the need to identify and characterize both native and previously unknown introduced forest Phytophthoras.File | Dimensione | Formato | |
---|---|---|---|
Linzer_2009_Mycological-Research.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
283.19 kB
Formato
Adobe PDF
|
283.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.