To compare the amount of extruded debris caused by different motions using a single-file system. Fifty mandibular first molar teeth were randomized into 5 groups (n = 10) according to the motion tested: Optimize Torque Reverse (OTR), TF Adaptive Motion (TFA), continuous rotation (CR), reciprocation motion (+ 150 degrees, -30 degrees) (REC), and Jeni motion (Jeni). One Curve single file 25/06 (Micro-Mega, Besancon, France) was used in all experimental groups. The root canals were irrigated with 2.5% NaOCl, and the extruded debris were collected at pre-weighted glass vials. The glass vials were kept inside an incubator for one week at 70 degrees C to dry out the irrigating solution. The extruded debris was quantified by subtracting the pre-instrumentation from the post-instrumentation weight of the glass vials. The time required for each instrumentation procedure was digitally recorded. All data were analyzed statistically with one way ANOVA and post hoc Tukey test (P < 0.05). All the motions extruded apically debris with Jeni mode caused significantly less debris extrusion than TFA, REC, and CR (P < 0.05) while no significant difference emerged with OTR. Preparation time was not significantly different in all groups. Within the limits of the present study, all the kinematics produced apically debris extrusion, with Jeni reporting a similar amount of debris compared with OTR and significantly less than TFA, REC, and CR. Preparation time was similar among the tested kinematics.

The effect of different kinematics on apical debris extrusion with a single-file system

La Rosa, Giusy Rita Maria;Pedulla', Eugenio
2023-01-01

Abstract

To compare the amount of extruded debris caused by different motions using a single-file system. Fifty mandibular first molar teeth were randomized into 5 groups (n = 10) according to the motion tested: Optimize Torque Reverse (OTR), TF Adaptive Motion (TFA), continuous rotation (CR), reciprocation motion (+ 150 degrees, -30 degrees) (REC), and Jeni motion (Jeni). One Curve single file 25/06 (Micro-Mega, Besancon, France) was used in all experimental groups. The root canals were irrigated with 2.5% NaOCl, and the extruded debris were collected at pre-weighted glass vials. The glass vials were kept inside an incubator for one week at 70 degrees C to dry out the irrigating solution. The extruded debris was quantified by subtracting the pre-instrumentation from the post-instrumentation weight of the glass vials. The time required for each instrumentation procedure was digitally recorded. All data were analyzed statistically with one way ANOVA and post hoc Tukey test (P < 0.05). All the motions extruded apically debris with Jeni mode caused significantly less debris extrusion than TFA, REC, and CR (P < 0.05) while no significant difference emerged with OTR. Preparation time was not significantly different in all groups. Within the limits of the present study, all the kinematics produced apically debris extrusion, with Jeni reporting a similar amount of debris compared with OTR and significantly less than TFA, REC, and CR. Preparation time was similar among the tested kinematics.
2023
Adaptive motion
Canal pro Jeni
Debris extrusion
One Curve
Optimum Torque Reverse
File in questo prodotto:
File Dimensione Formato  
La Rosa_effect of different kinematics on apical debris extrusion_2023.pdf

accesso aperto

Licenza: Creative commons
Dimensione 434.98 kB
Formato Adobe PDF
434.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/563889
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact