In this article, we develop a simple and accurate model for evaluating the propagation delay in MOS Current-Mode Logic (MCML) gates. The model describes the behavior of MCML gates in a linear fashion despite the circuits themselves being non-linear. Indeed, we demonstrate that a linear model can be used, provided that, for each small-signal parameter, its average value calculated between the two different switching logic states is used. The proposed model is validated through simulations of MCML universal gates designed using modern nanometer processes. The model forecasts simulated values with an error lower than 4% and 20% in 65-nm standard CMOS and 28-nm Fully-Depleted Silicon-On-Insulator (FD-SOI), respectively.

Simple and Accurate Model for the Propagation Delay in MCML Gates

Giustolisi, G
Primo
;
Scotti, G
Secondo
;
Palumbo, G
Ultimo
2023-01-01

Abstract

In this article, we develop a simple and accurate model for evaluating the propagation delay in MOS Current-Mode Logic (MCML) gates. The model describes the behavior of MCML gates in a linear fashion despite the circuits themselves being non-linear. Indeed, we demonstrate that a linear model can be used, provided that, for each small-signal parameter, its average value calculated between the two different switching logic states is used. The proposed model is validated through simulations of MCML universal gates designed using modern nanometer processes. The model forecasts simulated values with an error lower than 4% and 20% in 65-nm standard CMOS and 28-nm Fully-Depleted Silicon-On-Insulator (FD-SOI), respectively.
2023
Current Mode Logic
digital circuits
MCML
nanometer CMOS
propagation delay
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/569890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact