: The monoclinic structures of vanadium dioxide are widely studied as appealing systems due to a plethora of functional properties in several technological fields. In particular, the possibility to obtain the VO2 material in the form of thin film with a high control of structure and morphology represents a key issue for their use in THz devices and sensors. Herein, a fine control of the crystal habit has been addressed through an in-depth study of the metal organic chemical vapor deposition (MOCVD) synthetic approach. The focus is devoted to the key operative parameters such as deposition temperature inside the reactor in order to stabilize the P21/c or the C2/m monoclinic VO2 structures. Furthermore, the compositional purity, the morphology and the thickness of the VO2 films have been assessed through energy dispersive X-ray (EDX) analyses and field-emission scanning electron microscopy (FE-SEM), respectively. THz time domain spectroscopy is used to validate at very high frequency the functional properties of the as-prepared VO2 films.

Highly Tunable MOCVD Process of Vanadium Dioxide Thin Films: Relationship between Structural/Morphological Features and Electrodynamic Properties

Pellegrino, Anna Lucia
Primo
Writing – Original Draft Preparation
;
Lo Presti, Francesca
Secondo
Investigation
;
Malandrino, Graziella
Ultimo
Writing – Review & Editing
2023-01-01

Abstract

: The monoclinic structures of vanadium dioxide are widely studied as appealing systems due to a plethora of functional properties in several technological fields. In particular, the possibility to obtain the VO2 material in the form of thin film with a high control of structure and morphology represents a key issue for their use in THz devices and sensors. Herein, a fine control of the crystal habit has been addressed through an in-depth study of the metal organic chemical vapor deposition (MOCVD) synthetic approach. The focus is devoted to the key operative parameters such as deposition temperature inside the reactor in order to stabilize the P21/c or the C2/m monoclinic VO2 structures. Furthermore, the compositional purity, the morphology and the thickness of the VO2 films have been assessed through energy dispersive X-ray (EDX) analyses and field-emission scanning electron microscopy (FE-SEM), respectively. THz time domain spectroscopy is used to validate at very high frequency the functional properties of the as-prepared VO2 films.
2023
THz properties
X-ray powder pattern
monoclinic structure
File in questo prodotto:
File Dimensione Formato  
sensors-23-07270.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/571089
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact