This paper summarizes recent findings on the occurrence of hormesis in a wide range of adult stem cells, embryonic stem cells, and induced pluripotent stem cells and their derived cells. These areas of biomedical and toxicological research are quite new, with the strong majority of hormesis publications for most of these stem cells being published within the last five years. Hormetic responses were typically assessed for key biological priorities of stem cells, including cell proliferation, cell differentiation, cell migration, and enhanced resilience in highly inflammatory micro-environments. The quantitative features of the hormesis dose/concentration responses of all types of stem cells were similar with respect to amplitude and width of the stimulation. This was also the case with non-stem cells. Mechanistic pathways for hormetic dose responses were commonly reported and assessed for general patterns across inducing agents, culture conditions, and stem cell types. The use of hormetic strategies can enhance stem-cell performance on multiple key parameters in an integrated manner that has the potential to impact public health. For example, it can affect exercise that targets muscle stem cells (satellite cells) to prevent or decelerate down age-related fragility, medical applications (preconditioning of stem cells that target damaged tissues, for example, following stroke or heart attack), and the expression and timing of age-related degenerative processes and diseases.

Stem Cells And Hormesis

Vittorio Calabrese
2022-01-01

Abstract

This paper summarizes recent findings on the occurrence of hormesis in a wide range of adult stem cells, embryonic stem cells, and induced pluripotent stem cells and their derived cells. These areas of biomedical and toxicological research are quite new, with the strong majority of hormesis publications for most of these stem cells being published within the last five years. Hormetic responses were typically assessed for key biological priorities of stem cells, including cell proliferation, cell differentiation, cell migration, and enhanced resilience in highly inflammatory micro-environments. The quantitative features of the hormesis dose/concentration responses of all types of stem cells were similar with respect to amplitude and width of the stimulation. This was also the case with non-stem cells. Mechanistic pathways for hormetic dose responses were commonly reported and assessed for general patterns across inducing agents, culture conditions, and stem cell types. The use of hormetic strategies can enhance stem-cell performance on multiple key parameters in an integrated manner that has the potential to impact public health. For example, it can affect exercise that targets muscle stem cells (satellite cells) to prevent or decelerate down age-related fragility, medical applications (preconditioning of stem cells that target damaged tissues, for example, following stroke or heart attack), and the expression and timing of age-related degenerative processes and diseases.
2022
Hormesis
Stem cells
Cell proliferation
Cell differentiation
Resilience
Biphasic dose response
File in questo prodotto:
File Dimensione Formato  
Stem Cells And Hormesis.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 669.85 kB
Formato Adobe PDF
669.85 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/571673
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact