This paper provides a detailed identification and assessment of hormetic dose responses in neural stem cells (NSCs) as identified in a number of animal models and human tissues, with particular emphasis on cell proliferation and differentiation. Hormetic dose responses were commonly observed following administration of a number of agents, including dietary supplements [e.g., berberine, curcumin, (-)-epigallocatechin-3-gallate (EGCG), Ginkgo Biloba, resveratrol], pharmaceuticals (e.g., lithium, lovastatin, melatonin), endogenous ligands [e.g., hydrogen sulfide (H2S), magnesium, progesterone, taurine], environmental contaminants (e.g., arsenic, rotenone) and physical agents [e.g., hypoxia, ionizing radiation, electromagnetic radiation (EMF)]. These data indicate that numerous agents can induce hormetic dose responses to upregulate key functions of such as cell proliferation and differentiation in NSCs, and enhance resilience to inflammatory stresses. The paper assesses both putative mechanisms of hormetic responses in NSCs, and the potential therapeutic implications and application(s) of hormetic frameworks in clinical approaches to neurological injury and disease.

Hormesis and neural stem cells

Calabrese, Vittorio;
2022-01-01

Abstract

This paper provides a detailed identification and assessment of hormetic dose responses in neural stem cells (NSCs) as identified in a number of animal models and human tissues, with particular emphasis on cell proliferation and differentiation. Hormetic dose responses were commonly observed following administration of a number of agents, including dietary supplements [e.g., berberine, curcumin, (-)-epigallocatechin-3-gallate (EGCG), Ginkgo Biloba, resveratrol], pharmaceuticals (e.g., lithium, lovastatin, melatonin), endogenous ligands [e.g., hydrogen sulfide (H2S), magnesium, progesterone, taurine], environmental contaminants (e.g., arsenic, rotenone) and physical agents [e.g., hypoxia, ionizing radiation, electromagnetic radiation (EMF)]. These data indicate that numerous agents can induce hormetic dose responses to upregulate key functions of such as cell proliferation and differentiation in NSCs, and enhance resilience to inflammatory stresses. The paper assesses both putative mechanisms of hormetic responses in NSCs, and the potential therapeutic implications and application(s) of hormetic frameworks in clinical approaches to neurological injury and disease.
2022
Biphasic dose response
Cell differentiation
Cell proliferation
Hormesis
Neural stem cell
Stem cell
File in questo prodotto:
File Dimensione Formato  
Hormesis and neural stem cells.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.53 MB
Formato Adobe PDF
6.53 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/571698
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact