Centrosome amplification plays a key role in the origin of chromosomal instability (CIN) during cancer development and progression. In this study, MCF-7 breast cancer cell lines harboring abrogated p53 function (vMCF-7(DNp53)) were employed to investigate the relationship between induction of genotoxic stress, activation of cyclin-A/Cdk2 and Aurora-A oncogenic signalings and development of centrosome amplification. Introduction of genotoxic stress in the vMCF-7(DNp53) cell line by treatment with hydroxyurea (HU) induced centrosome amplification that was mechanistically linked to Aurora-A kinase activity. In cells carrying defective p53, the development of centrosome amplification also occurred following treatment with another DNA damaging agent, methotrexate. Importantly, we demonstrated that Aurora-A kinase-induced centrosome amplification was mediated by Cdk2 kinase since molecular inhibition of Cdk2 activity by SU9516 suppressed Aurora-A centrosomal localization and consequent centrosome amplification. In addition, we employed vMCF-7(DRaf-1) cells that display high levels of endogenous cyclin-A and demonstrated that molecular targeting of Aurora-A by Alisertib reduces cyclin-A expression. Taken together, these findings demonstrate a novel positive feed-back loop between cyclin-A/Cdk2 and Aurora-A pathways in the development of centrosome amplification in breast cancer cells. They also provide the translational rationale for targeting `druggable cell cycle regulators' as an innovative therapeutic strategy to inhibit centrosome amplification and CIN in breast tumors resistant to conventional chemotherapeutic drugs

Inhibition of Cdk2 activity decreases Aurora-A kinase centrosomal localization and prevents centrosome amplification in breast cancer cells

VEROUX, Massimiliano;
2013-01-01

Abstract

Centrosome amplification plays a key role in the origin of chromosomal instability (CIN) during cancer development and progression. In this study, MCF-7 breast cancer cell lines harboring abrogated p53 function (vMCF-7(DNp53)) were employed to investigate the relationship between induction of genotoxic stress, activation of cyclin-A/Cdk2 and Aurora-A oncogenic signalings and development of centrosome amplification. Introduction of genotoxic stress in the vMCF-7(DNp53) cell line by treatment with hydroxyurea (HU) induced centrosome amplification that was mechanistically linked to Aurora-A kinase activity. In cells carrying defective p53, the development of centrosome amplification also occurred following treatment with another DNA damaging agent, methotrexate. Importantly, we demonstrated that Aurora-A kinase-induced centrosome amplification was mediated by Cdk2 kinase since molecular inhibition of Cdk2 activity by SU9516 suppressed Aurora-A centrosomal localization and consequent centrosome amplification. In addition, we employed vMCF-7(DRaf-1) cells that display high levels of endogenous cyclin-A and demonstrated that molecular targeting of Aurora-A by Alisertib reduces cyclin-A expression. Taken together, these findings demonstrate a novel positive feed-back loop between cyclin-A/Cdk2 and Aurora-A pathways in the development of centrosome amplification in breast cancer cells. They also provide the translational rationale for targeting `druggable cell cycle regulators' as an innovative therapeutic strategy to inhibit centrosome amplification and CIN in breast tumors resistant to conventional chemotherapeutic drugs
File in questo prodotto:
File Dimensione Formato  
Inhibition of Cdk2 activity.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 366.36 kB
Formato Adobe PDF
366.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/57310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact