The 4d transition metal perovskites Can+1RunO3n+1 have attracted interest for their strongly interacting electronic phases showing pronounced sensitivity to controllable stimuli like strain, temperature, and even electrical current. Through multi-messenger low-temperature nano-imaging, we reveal a spontaneous striped texture of coexisting insulating and metallic domains in single crystals of the bilayer ruthenate Ca3(TixRu1-x)2O7 across its first-order Mott transition at T≈ 95 K. We image on-demand anisotropic nucleation and growth of these domains under in situ applied uniaxial strain rationalized through control of a spontaneous Jahn-Teller distortion. Our scanning nano-susceptibility imaging resolves the detailed susceptibility of coexisting phases to strain and temperature at the transition threshold. Comparing these nano-imaging results to bulk-sensitive elastoresistance measurements, we uncover an emergent “domain susceptibility” sensitive to both the volumetric phase fractions and elasticity of the self-organized domain lattice. Our combined susceptibility probes afford nano-scale insights into strain-mediated control over the insulator-metal transition in 4d transition metal oxides.

Nano-imaging of strain-tuned stripe textures in a Mott crystal

Chiriaco G.;
2021-01-01

Abstract

The 4d transition metal perovskites Can+1RunO3n+1 have attracted interest for their strongly interacting electronic phases showing pronounced sensitivity to controllable stimuli like strain, temperature, and even electrical current. Through multi-messenger low-temperature nano-imaging, we reveal a spontaneous striped texture of coexisting insulating and metallic domains in single crystals of the bilayer ruthenate Ca3(TixRu1-x)2O7 across its first-order Mott transition at T≈ 95 K. We image on-demand anisotropic nucleation and growth of these domains under in situ applied uniaxial strain rationalized through control of a spontaneous Jahn-Teller distortion. Our scanning nano-susceptibility imaging resolves the detailed susceptibility of coexisting phases to strain and temperature at the transition threshold. Comparing these nano-imaging results to bulk-sensitive elastoresistance measurements, we uncover an emergent “domain susceptibility” sensitive to both the volumetric phase fractions and elasticity of the self-organized domain lattice. Our combined susceptibility probes afford nano-scale insights into strain-mediated control over the insulator-metal transition in 4d transition metal oxides.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/574633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact