A model-based strategy for an efficient power supply control used in a wireless sensor network is presented. The strategy, based on Pulse-Skipping Modulation, regulates the current charging a battery, delivered by a photovoltaic source, resulting in an accurate current regulation and highly efficient power management. The strategy is implemented on a microcontroller unit and compensates for the microcontroller self-absorbed current. The modulation signal is generated through a full software interface, reducing the requirement for external components. Experimental validations, performed on a charger prototype by using a laboratory photovoltaic device simulator, proved that both regulation accuracy, regulation resolution and converter efficiency achieved are superior to the classic Pulse-Width Modulation. The approach results in a simple practical implementation, carries over the advantages of an up-to-date model for the photovoltaic device, and serves the auxiliary purpose of using the photovoltaic source as an instantaneous solar irradiance sensor.

Model-Based Power Management for Smart Farming Wireless Sensor Networks

Laudani A.;
2022-01-01

Abstract

A model-based strategy for an efficient power supply control used in a wireless sensor network is presented. The strategy, based on Pulse-Skipping Modulation, regulates the current charging a battery, delivered by a photovoltaic source, resulting in an accurate current regulation and highly efficient power management. The strategy is implemented on a microcontroller unit and compensates for the microcontroller self-absorbed current. The modulation signal is generated through a full software interface, reducing the requirement for external components. Experimental validations, performed on a charger prototype by using a laboratory photovoltaic device simulator, proved that both regulation accuracy, regulation resolution and converter efficiency achieved are superior to the classic Pulse-Width Modulation. The approach results in a simple practical implementation, carries over the advantages of an up-to-date model for the photovoltaic device, and serves the auxiliary purpose of using the photovoltaic source as an instantaneous solar irradiance sensor.
2022
Batteries
Battery charging
Computational modeling
DC-DC conversion
Integrated circuit modeling
Modulation
photovoltaics
pulse skipping modulation
Temperature measurement
Temperature sensors
Wireless sensor networks
wireless sensor networks
File in questo prodotto:
File Dimensione Formato  
Model-Based_Power_Management_for_Smart_Farming_Wireless_Sensor_Networks (1).pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.28 MB
Formato Adobe PDF
4.28 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/575456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact