We study a four-stroke Otto engine whose working fluid is a quantum Ising chain. The thermodynamic cycle consists in sweeps of the transverse magnetic field occurring in thermal isolation, alternated by thermalisation strokes with reservoirs at different temperatures. The system-environment coupling is modelled in a thermodynamically consistent way by means of a nonlocal Lindblad master equation. We show that the engine may operate in four different operation modes, depending on the various parameters, in particular it can act as a heat engine and as a refrigerator. We detect an enhancement of the thermodynamic performance as the critical point is crossed, and investigate it in detail.

The Ising critical quantum Otto engine

Piccitto G.
Primo
;
2022-01-01

Abstract

We study a four-stroke Otto engine whose working fluid is a quantum Ising chain. The thermodynamic cycle consists in sweeps of the transverse magnetic field occurring in thermal isolation, alternated by thermalisation strokes with reservoirs at different temperatures. The system-environment coupling is modelled in a thermodynamically consistent way by means of a nonlocal Lindblad master equation. We show that the engine may operate in four different operation modes, depending on the various parameters, in particular it can act as a heat engine and as a refrigerator. We detect an enhancement of the thermodynamic performance as the critical point is crossed, and investigate it in detail.
2022
heat engines
quantum criticality
quantum Ising spin chain
quantum thermodynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/578796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact