This paper investigates CMOS operational transconductance amplifier (OTA) design methodologies suitable for Internet of Things nodes. The use of MOS transistors in the subthreshold of the body terminal for signal input or bias, as well as newer inverter- and digital-based techniques, is considered. Solutions from the authors’ work are utilized as main case examples. State-of-the-art ultra-low-power OTAs are then thoroughly compared using a data-driven approach. According to the findings, digital- and inverter-based solutions have the lowest area occupation and superior small-signal performance but are inherently susceptible to process, supply, and temperature (PVT) variations. The only “analog” approach suitable for a sub-0.6 V supply is body driving in conjunction with subthreshold bias. It offers competitive large-signal performance and, more importantly, is less sensitive to PVT variations at the expense of silicon area.

A Survey of Ultra-Low-Power Amplifiers for Internet of Things Nodes

Grasso A. D.
Primo
;
Pennisi S.
;
Venezia C.
2023-01-01

Abstract

This paper investigates CMOS operational transconductance amplifier (OTA) design methodologies suitable for Internet of Things nodes. The use of MOS transistors in the subthreshold of the body terminal for signal input or bias, as well as newer inverter- and digital-based techniques, is considered. Solutions from the authors’ work are utilized as main case examples. State-of-the-art ultra-low-power OTAs are then thoroughly compared using a data-driven approach. According to the findings, digital- and inverter-based solutions have the lowest area occupation and superior small-signal performance but are inherently susceptible to process, supply, and temperature (PVT) variations. The only “analog” approach suitable for a sub-0.6 V supply is body driving in conjunction with subthreshold bias. It offers competitive large-signal performance and, more importantly, is less sensitive to PVT variations at the expense of silicon area.
2023
bulk-driven
low-voltage
operational transconductance amplifiers
subthreshold
ultra-low-power design
File in questo prodotto:
File Dimensione Formato  
r78 review electronics-12-04361.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.1 MB
Formato Adobe PDF
7.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/579009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact