We investigate the intra- and inter-crystalline deformation processes involved in sheath fold development combining complementary fabric analysis techniques and 3D modelling by neutron tomography. The investigated sheath fold is a multi-layered sub-metre scale single-eye structure, developed in metapsammites from the Ben Hope Nappe, overlying the Moine Thrust Zone of NW Scotland. Crystallographic Preferred Orientations (CPOs) of quartz and biotite were acquired through a Neutron Diffractometer and an SEM-EBSD system to compare the full-fabric of the main phases and the active slip systems for an “in situ” structural control. Combined with orientation maps and grain size maps, results show that, despite the different structural positions of the investigated microdomains (upper vs lower fold limbs, inner vs outer sheath closures, distance from hinge of the sheath fold), quartz and biotite deformed uniformly, suggesting a constant differential stress and orientation of the kinematic vorticity axis. Previously recognized detachment horizons within the sampled sheath fold do not affect the fabric patterns recorded by quartz and biotite. This may be interpreted in two different ways: i) detachments formed during earlier active folding and prior to passive amplification of folds associated with more uniform flow to create the sheath fold geometries; ii) the quartz c-axis patterns are coeval with a late deformation phase (loading of the orogenic wedge) that pervasively obliterated the previous fabric and therefore did not preserve the active folding component. Several pieces of evidence reported here, such as top-to-SE normal-shear sense which is opposite to the regional kinematics, are more supportive of the second hypothesis. The analysis of mineral textures provides an improved dataset for the whole sheath fold and increases our understanding of recrystallization mechanisms active in shear zones.
CPO and quantitative textural analyses within sheath folds
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Fazio, E.
						
						
							Primo
						
						
							Writing – Review & Editing
;Gambino, S.Methodology
;Cirrincione, R.Supervision
;
	
		
		
	
			2024-01-01
Abstract
We investigate the intra- and inter-crystalline deformation processes involved in sheath fold development combining complementary fabric analysis techniques and 3D modelling by neutron tomography. The investigated sheath fold is a multi-layered sub-metre scale single-eye structure, developed in metapsammites from the Ben Hope Nappe, overlying the Moine Thrust Zone of NW Scotland. Crystallographic Preferred Orientations (CPOs) of quartz and biotite were acquired through a Neutron Diffractometer and an SEM-EBSD system to compare the full-fabric of the main phases and the active slip systems for an “in situ” structural control. Combined with orientation maps and grain size maps, results show that, despite the different structural positions of the investigated microdomains (upper vs lower fold limbs, inner vs outer sheath closures, distance from hinge of the sheath fold), quartz and biotite deformed uniformly, suggesting a constant differential stress and orientation of the kinematic vorticity axis. Previously recognized detachment horizons within the sampled sheath fold do not affect the fabric patterns recorded by quartz and biotite. This may be interpreted in two different ways: i) detachments formed during earlier active folding and prior to passive amplification of folds associated with more uniform flow to create the sheath fold geometries; ii) the quartz c-axis patterns are coeval with a late deformation phase (loading of the orogenic wedge) that pervasively obliterated the previous fabric and therefore did not preserve the active folding component. Several pieces of evidence reported here, such as top-to-SE normal-shear sense which is opposite to the regional kinematics, are more supportive of the second hypothesis. The analysis of mineral textures provides an improved dataset for the whole sheath fold and increases our understanding of recrystallization mechanisms active in shear zones.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											1-s2.0-S0191814123002171-main (1).pdf
										
																				
									
										
											 solo gestori archivio 
											Tipologia:
											Documento in Pre-print
										 
									
									
									
									
										
											Licenza:
											
											
												NON PUBBLICO - Accesso privato/ristretto
												
												
												
											
										 
									
									
										Dimensione
										9.94 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								9.94 MB | Adobe PDF | Visualizza/Apri | 
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											1-s2.0-S0191814123002171-main_compresso.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Versione Editoriale (PDF)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										5.61 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								5.61 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


