A multi-analytical study on serpentinites in the ophiolite units (Calabria-Basilicata boundary, southern Apennines) was carried out on samples collected from a serpentinite quarry, locally called “Pietrapica”, which sitsin the Pollino UNESCO Global Geopark. Optical microscopy observations revealed the petrographic characteristics, ICP-MS was used to assess the chemical composition while EMPA mineral chemistry, Raman spectroscopy and X-Ray Powder Diffraction and were used altogether to trace the mineral composition of the rocks. Petrography revealed that serpentinites from Pietrapica quarry are essentially composed of serpentine group minerals, amphibole and carbonate minerals with lower abundances of talc and Cr-spinel. Raman spectroscopy and X-ray powder diffraction analysis clearly allowed to establish that carbonate minerals, serpentine and amphibole-like minerals, are the dominant phases, followed by 2:1 phyllosilicate. Electron probe microanalyses were carried out on different minerals in serpentinites samples including serpentine, amphibole, chlorite, clinopyroxene, magnetite, talc, quartz and titanite which are often associated with carbonate veins. Bulk geochemistry is dominated by major oxides SiO2, MgO and Fe2O3 while the most abundant trace elements are Ni and Cr. Chemical analysis showed that some heavy metals in the studied serpentinites such as Ni and Cr, are beyond the maximum admissible limits for Italian normative for public, private and residential green as well as for commercial and industrial use representing a potential environmental concern. Anyway, some of these heavy metals have been recently listed by Europe as critical raw materials and therefore, the Pietrapica abandoned quarry could represent a new resource considering their economic potentiality
Petrography, Geochemistry and Mineralogy of Serpentinite Rocks Exploited in the Ophiolite Units at the Calabria-Basilicata Boundary, Southern Apennine (Italy)
Punturo Rosalda;
2023-01-01
Abstract
A multi-analytical study on serpentinites in the ophiolite units (Calabria-Basilicata boundary, southern Apennines) was carried out on samples collected from a serpentinite quarry, locally called “Pietrapica”, which sitsin the Pollino UNESCO Global Geopark. Optical microscopy observations revealed the petrographic characteristics, ICP-MS was used to assess the chemical composition while EMPA mineral chemistry, Raman spectroscopy and X-Ray Powder Diffraction and were used altogether to trace the mineral composition of the rocks. Petrography revealed that serpentinites from Pietrapica quarry are essentially composed of serpentine group minerals, amphibole and carbonate minerals with lower abundances of talc and Cr-spinel. Raman spectroscopy and X-ray powder diffraction analysis clearly allowed to establish that carbonate minerals, serpentine and amphibole-like minerals, are the dominant phases, followed by 2:1 phyllosilicate. Electron probe microanalyses were carried out on different minerals in serpentinites samples including serpentine, amphibole, chlorite, clinopyroxene, magnetite, talc, quartz and titanite which are often associated with carbonate veins. Bulk geochemistry is dominated by major oxides SiO2, MgO and Fe2O3 while the most abundant trace elements are Ni and Cr. Chemical analysis showed that some heavy metals in the studied serpentinites such as Ni and Cr, are beyond the maximum admissible limits for Italian normative for public, private and residential green as well as for commercial and industrial use representing a potential environmental concern. Anyway, some of these heavy metals have been recently listed by Europe as critical raw materials and therefore, the Pietrapica abandoned quarry could represent a new resource considering their economic potentialityFile | Dimensione | Formato | |
---|---|---|---|
2023-fibers-BAsilicata-PIetra Pica.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
5.06 MB
Formato
Adobe PDF
|
5.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.