The increasing use of Artificial Intelligence algorithms underscores the importance of large datasets. Recent trends highlight the need for high-quality training data, especially in scenarios where data may be outdated or insufficient. This challenge is particularly evident in applications where sensors cannot be installed or data is limited, such as in the case of steel components widely used in various industries. To address this gap, model-based approaches show promise by using advanced Digital Twin systems to generate synthetic data, closer to the real working scenarios, for training Artificial Intelligence algorithms. This paper introduces a novel Dynamic Reliability Digital Twin to model cumulative fatigue damage in steel components based on Wöhler and Manson & Halford theory and on a Monte Carlo simulation, providing a dataset for training an AI predictor to estimate remaining useful life. The results demonstrate that machine learning algorithms yield favorable outcomes when the dataset is appropriately calibrated. Therefore, a thorough understanding of the underlying physics is essential to avoid potential bias in the machine learning results.

Predictive maintenance of standalone steel industrial components powered by a Dynamic Reliability Digital Twin model with Artificial Intelligence

Diego D'Urso;Ferdinando Chiacchio
;
Salvatore Cavalieri;Salvatore Gambadoro;Soheyl Moheb Khodayee
2024-01-01

Abstract

The increasing use of Artificial Intelligence algorithms underscores the importance of large datasets. Recent trends highlight the need for high-quality training data, especially in scenarios where data may be outdated or insufficient. This challenge is particularly evident in applications where sensors cannot be installed or data is limited, such as in the case of steel components widely used in various industries. To address this gap, model-based approaches show promise by using advanced Digital Twin systems to generate synthetic data, closer to the real working scenarios, for training Artificial Intelligence algorithms. This paper introduces a novel Dynamic Reliability Digital Twin to model cumulative fatigue damage in steel components based on Wöhler and Manson & Halford theory and on a Monte Carlo simulation, providing a dataset for training an AI predictor to estimate remaining useful life. The results demonstrate that machine learning algorithms yield favorable outcomes when the dataset is appropriately calibrated. Therefore, a thorough understanding of the underlying physics is essential to avoid potential bias in the machine learning results.
2024
Steel cumulative damage; Digital Twin; model-based maintenance; data driven maintenance
File in questo prodotto:
File Dimensione Formato  
ReliabilityEngineeringSystemSafety_2024.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/581653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact