Progress in DNA profiling techniques has made it possible to detect even the minimum amount of DNA at a crime scene (i.e., a complete DNA profile can be produced using as little as 100 pg of DNA, equivalent to only 15-20 human cells), leading to new defense strategies. While the evidence of a DNA trace is seldom challenged in court by a defendant's legal team, concerns are often raised about how the DNA was transferred to the location of the crime. This review aims to provide an up-to-date overview of the experimental work carried out focusing on indirect DNA transfer, analyzing each selected paper, the experimental method, the sampling technique, the extraction protocol, and the main results. Scopus and Web of Science databases were used as the search engines, including 49 papers. Based on the results of this review, one of the factors that influence secondary transfer is the amount of DNA shed by different individuals. Another factor is the type and duration of contact between individuals or objects (generally, more intimate or prolonged contact results in more DNA transfer). A third factor is the nature and quality of the DNA source. However, there are exceptions and variations depending on individual characteristics and environmental conditions. Considering that secondary transfer depends on multiple factors that interact with each other in unpredictable ways, it should be considered a complex and dynamic phenomenon that can affect forensic investigation in various ways, for example, placing a subject at a crime scene who has never been there. Correct methods and protocols are required to detect and prevent secondary transfer from compromising forensic evidence, as well as the correct interpretation through Bayesian networks. In this context, the definition of well-designed experimental studies combined with the use of new forensic techniques could improve our knowledge in this challenging field, reinforcing the value of DNA evidence in criminal trials.

Indirect DNA Transfer and Forensic Implications: A Literature Review

Francesco Sessa
;
CRISTOFORO POMARA;Massimiliano Esposito;Giuseppe Cocimano;Monica Salerno
2023-01-01

Abstract

Progress in DNA profiling techniques has made it possible to detect even the minimum amount of DNA at a crime scene (i.e., a complete DNA profile can be produced using as little as 100 pg of DNA, equivalent to only 15-20 human cells), leading to new defense strategies. While the evidence of a DNA trace is seldom challenged in court by a defendant's legal team, concerns are often raised about how the DNA was transferred to the location of the crime. This review aims to provide an up-to-date overview of the experimental work carried out focusing on indirect DNA transfer, analyzing each selected paper, the experimental method, the sampling technique, the extraction protocol, and the main results. Scopus and Web of Science databases were used as the search engines, including 49 papers. Based on the results of this review, one of the factors that influence secondary transfer is the amount of DNA shed by different individuals. Another factor is the type and duration of contact between individuals or objects (generally, more intimate or prolonged contact results in more DNA transfer). A third factor is the nature and quality of the DNA source. However, there are exceptions and variations depending on individual characteristics and environmental conditions. Considering that secondary transfer depends on multiple factors that interact with each other in unpredictable ways, it should be considered a complex and dynamic phenomenon that can affect forensic investigation in various ways, for example, placing a subject at a crime scene who has never been there. Correct methods and protocols are required to detect and prevent secondary transfer from compromising forensic evidence, as well as the correct interpretation through Bayesian networks. In this context, the definition of well-designed experimental studies combined with the use of new forensic techniques could improve our knowledge in this challenging field, reinforcing the value of DNA evidence in criminal trials.
2023
forensic implications
indirect DNA transfer
secondary transfer
touch DNA
File in questo prodotto:
File Dimensione Formato  
2023_Indirect DNA Transfer and Forensic implications a literature review.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 783.76 kB
Formato Adobe PDF
783.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/586402
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact