The degradation trend of photovoltaic modules depends on the technology, manufacturing techniques and climatic conditions of the site where they are installed. Longer useful life of the PV modules means that they will be able to produce much more energy than was used to build them; thus, extending the useful life of the modules is beneficial for the environment and increases the cost effectiveness of PVs. The problem of land use has prompted the development of agrivoltaic systems to exploit the same land both for the production of energy and for agriculture, and on water surfaces such as lakes and dams (floating PV). The exploitation of floating PV systems in onshore and offshore areas is currently under study. This constitutes an opportunity for which many factors must be taken into account; a fundamental aspect is the environmental impact, on which some recent studies have focused. Another aspect is the impact of the marine environment on PV system reliability and durability, due to the stress on operating conditions. The aim of this preliminary study is to evaluate the influence of the marine environment on the degradation trend of photovoltaic modules, based on existing models whose inputs are meteorological data from offshore locations. The results obtained from the application of a cumulative exposure model unexpectedly showed a lower degradation value in the offshore environment than on the mainland: −0.95% and −3% values of power decay, respectively. The absolute value of power decay in the onshore case is higher than the typical values because the used model has to be revised, as the empirical coefficients of the model have to be calculated according to the installation environment. The empirical coefficients used in the model were obtained in environmental conditions different from those under study. In the offshore case, the degradation estimated by the model does not take into account some environmental factors typical of the marine environment. Model adaptations calibrated with datasets of plants in environmental conditions similar to those analyzed would allow for greater accuracy in the results.
Photovoltaic Module Degradation Forecast Models for Onshore and Offshore Floating Systems
Mannino G.;Tina G. M.;Cacciato M.;Merlo L.;Canino A.
2023-01-01
Abstract
The degradation trend of photovoltaic modules depends on the technology, manufacturing techniques and climatic conditions of the site where they are installed. Longer useful life of the PV modules means that they will be able to produce much more energy than was used to build them; thus, extending the useful life of the modules is beneficial for the environment and increases the cost effectiveness of PVs. The problem of land use has prompted the development of agrivoltaic systems to exploit the same land both for the production of energy and for agriculture, and on water surfaces such as lakes and dams (floating PV). The exploitation of floating PV systems in onshore and offshore areas is currently under study. This constitutes an opportunity for which many factors must be taken into account; a fundamental aspect is the environmental impact, on which some recent studies have focused. Another aspect is the impact of the marine environment on PV system reliability and durability, due to the stress on operating conditions. The aim of this preliminary study is to evaluate the influence of the marine environment on the degradation trend of photovoltaic modules, based on existing models whose inputs are meteorological data from offshore locations. The results obtained from the application of a cumulative exposure model unexpectedly showed a lower degradation value in the offshore environment than on the mainland: −0.95% and −3% values of power decay, respectively. The absolute value of power decay in the onshore case is higher than the typical values because the used model has to be revised, as the empirical coefficients of the model have to be calculated according to the installation environment. The empirical coefficients used in the model were obtained in environmental conditions different from those under study. In the offshore case, the degradation estimated by the model does not take into account some environmental factors typical of the marine environment. Model adaptations calibrated with datasets of plants in environmental conditions similar to those analyzed would allow for greater accuracy in the results.File | Dimensione | Formato | |
---|---|---|---|
Photovoltaic Module Degradation Forecast Models for Onshore.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
5.74 MB
Formato
Adobe PDF
|
5.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.