8-Hydroxyquinolines are systems of great interest in the field of inorganic and bioinorganic chemistry. They are metal-binding compounds and are known to exhibit a variety of biological activities, such as antibacterial and anticancer activities. Among these systems, clioquinol is the focus of a renewed interest in recent years. In this scenario, we synthesized and characterized the new clioquinol glucoconjugate, 5-chloro-7-iodo-8-quinolinyl-β-D-glucopyranoside in order to compare this system to that of clioquinol. We also synthesized, 8-quinolinyl-β-D-glucopyranoside, an 8-hydroxyquinoline glucoconjugate. The rationale behind the development of glucoconjugates resides in the glucose avidity, and over-expression of glucose transporters in cancer cells. Here we demonstrate that glycoconjugates are cleaved in vitro by β-glucosidase and these systems exhibit antiproliferative activity against different tumor cell lines in the presence of copper(II) ions.

8-Hydroxyquinolines are systems of great interest in the field of inorganic and bioinorganic chemistry. They are metal-binding compounds and are known to exhibit a variety of biological activities, such as antibacterial and anticancer activities. Among these systems, clioquinol has been the focus of a renewed interest in recent years. In this scenario, we synthesized and characterized the new clioquinol glucoconjugate, 5-chloro-7-iodo-8-quinolinyl-beta-D-glucopyranoside in order to compare this system to that of clioquinol. We also synthesized, 8-quinolinyl-beta-D-glucopyranoside, an 8-hydroxyquinoline glucoconjugate. The reason for the development of glucoconjugates is the glucose avidity, and the over-expression of glucose transporters in cancer cells. Here we demonstrate that glycoconjugates are cleaved in vitro by beta-glucosidase and these systems exhibit antiproliferative activity against different tumor cell lines in the presence of copper(II) ions.

Gluconjugates of 8-hydroxyquinolines as potential anti-cancer prodrugs

OLIVERI, VALENTINA;VECCHIO, Graziella;
2012-01-01

Abstract

8-Hydroxyquinolines are systems of great interest in the field of inorganic and bioinorganic chemistry. They are metal-binding compounds and are known to exhibit a variety of biological activities, such as antibacterial and anticancer activities. Among these systems, clioquinol is the focus of a renewed interest in recent years. In this scenario, we synthesized and characterized the new clioquinol glucoconjugate, 5-chloro-7-iodo-8-quinolinyl-β-D-glucopyranoside in order to compare this system to that of clioquinol. We also synthesized, 8-quinolinyl-β-D-glucopyranoside, an 8-hydroxyquinoline glucoconjugate. The rationale behind the development of glucoconjugates resides in the glucose avidity, and over-expression of glucose transporters in cancer cells. Here we demonstrate that glycoconjugates are cleaved in vitro by β-glucosidase and these systems exhibit antiproliferative activity against different tumor cell lines in the presence of copper(II) ions.
2012
8-Hydroxyquinolines are systems of great interest in the field of inorganic and bioinorganic chemistry. They are metal-binding compounds and are known to exhibit a variety of biological activities, such as antibacterial and anticancer activities. Among these systems, clioquinol has been the focus of a renewed interest in recent years. In this scenario, we synthesized and characterized the new clioquinol glucoconjugate, 5-chloro-7-iodo-8-quinolinyl-beta-D-glucopyranoside in order to compare this system to that of clioquinol. We also synthesized, 8-quinolinyl-beta-D-glucopyranoside, an 8-hydroxyquinoline glucoconjugate. The reason for the development of glucoconjugates is the glucose avidity, and the over-expression of glucose transporters in cancer cells. Here we demonstrate that glycoconjugates are cleaved in vitro by beta-glucosidase and these systems exhibit antiproliferative activity against different tumor cell lines in the presence of copper(II) ions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/59190
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 54
social impact