Microplastics (MPs) are pervasive in marine environments and widely recognized as emerging environmental pollutants due to the multifaceted risks they exert on living organisms and ecosystems. Sponges (Phylum Por-ifera) are essential suspension-feeding organisms that may be highly susceptible to MPs uptake due to their global distribution, unique feeding behavior, and sedentary lifestyle. However, the role of sponges in MP research remains largely underexplored. In the present study, we investigate the presence and abundance of MPs (& LE;10 jm size) in four sponge species, namely Chondrosia reniformis, Ircinia variabilis, Petrosia ficiformis, and Sarcotragus spinosulus collected from four sites along the Mediterranean coast of Morocco, as well as their spatial distribution. MPs analysis was conducted using an innovative Italian patented extraction methodology coupled with SEM-EDX detection. Our findings reveal the presence of MPs in all collected sponge specimens, indicating a pollution rate of 100%. The abundance of MPs in the four sponge species ranged from 3.95x105 to 1.05x106 particles per gram dry weight of sponge tissue, with significant differences observed among sampling sites but no species-specific differences. These results imply that the uptake of MPs by sponges is likely influenced by aquatic environmental pollution rather than the sponge species themselves. The smallest and largest MPs were identified in C. reniformis and P. ficiformis, with median diameters of 1.84 jm and 2.57 jm, respectively. Overall, this study provides the first evidence and an important baseline for the ingestion of small MP particles in Mediterranean sponges, introducing the hypothesis that they may serve as valuable bioindicators of MP pollution in the near future.

Microplastics (≤ 10 μm) bioaccumulation in marine sponges along the Moroccan Mediterranean coast: Insights into species-specific distribution and potential bioindication

Oliveri Conti G.;Pulvirenti E.;Rapisarda P.;Castrogiovanni M.;Ferrante M.;
2023-01-01

Abstract

Microplastics (MPs) are pervasive in marine environments and widely recognized as emerging environmental pollutants due to the multifaceted risks they exert on living organisms and ecosystems. Sponges (Phylum Por-ifera) are essential suspension-feeding organisms that may be highly susceptible to MPs uptake due to their global distribution, unique feeding behavior, and sedentary lifestyle. However, the role of sponges in MP research remains largely underexplored. In the present study, we investigate the presence and abundance of MPs (& LE;10 jm size) in four sponge species, namely Chondrosia reniformis, Ircinia variabilis, Petrosia ficiformis, and Sarcotragus spinosulus collected from four sites along the Mediterranean coast of Morocco, as well as their spatial distribution. MPs analysis was conducted using an innovative Italian patented extraction methodology coupled with SEM-EDX detection. Our findings reveal the presence of MPs in all collected sponge specimens, indicating a pollution rate of 100%. The abundance of MPs in the four sponge species ranged from 3.95x105 to 1.05x106 particles per gram dry weight of sponge tissue, with significant differences observed among sampling sites but no species-specific differences. These results imply that the uptake of MPs by sponges is likely influenced by aquatic environmental pollution rather than the sponge species themselves. The smallest and largest MPs were identified in C. reniformis and P. ficiformis, with median diameters of 1.84 jm and 2.57 jm, respectively. Overall, this study provides the first evidence and an important baseline for the ingestion of small MP particles in Mediterranean sponges, introducing the hypothesis that they may serve as valuable bioindicators of MP pollution in the near future.
2023
Bioindicators
Coastal pollution
Microplastic pollution
Morocco
Porifera
SEM-EDX
File in questo prodotto:
File Dimensione Formato  
mycroplastic .pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/592830
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact