A global heat flux model based on a fractional derivative of plasma pressure is proposed for the heat transport in fusion plasmas. The degree of the fractional derivative of the heat flux, a, is defined through the power balance analysis of the steady state. The model was used to obtain the experimental values of a for a large database of the Joint European Torus (JET) carbon-wall as well as ITER like-wall plasmas. The fractional degrees of the electron heat flux are found to be alpha < 2, for all the selected pulses in the database, suggesting a deviation from the diffusive paradigm. Moreover, the results show that as the volume integrated input power is increased, the fractional degree of the electron heat flux converges to alpha similar to 0.8, indicating a global scaling between the net heating and the pressure profile in the high-power JET plasmas. The model is expected to provide insight into the proper kinetic description for the fusion plasmas and improve the accuracy of the heat transport predictions.
Global scaling of the heat transport in fusion plasmas
P. ArenaMembro del Collaboration Group
;
2020-01-01
Abstract
A global heat flux model based on a fractional derivative of plasma pressure is proposed for the heat transport in fusion plasmas. The degree of the fractional derivative of the heat flux, a, is defined through the power balance analysis of the steady state. The model was used to obtain the experimental values of a for a large database of the Joint European Torus (JET) carbon-wall as well as ITER like-wall plasmas. The fractional degrees of the electron heat flux are found to be alpha < 2, for all the selected pulses in the database, suggesting a deviation from the diffusive paradigm. Moreover, the results show that as the volume integrated input power is increased, the fractional degree of the electron heat flux converges to alpha similar to 0.8, indicating a global scaling between the net heating and the pressure profile in the high-power JET plasmas. The model is expected to provide insight into the proper kinetic description for the fusion plasmas and improve the accuracy of the heat transport predictions.File | Dimensione | Formato | |
---|---|---|---|
RI_XXX_2020_PhysRevResearch.2.013027.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
867.4 kB
Formato
Adobe PDF
|
867.4 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.