Research on graph representation learning has received great attention in recent years. However, most of the studies so far have focused on the embedding of single-layer graphs. The few studies dealing with the problem of representation learning of multilayer structures rely on the strong hypothesis that the inter-layer links are known, and this limits the range of possible applications. Here we propose MultiplexSAGE, a generalization of the GraphSAGE algorithm that allows embedding multiplex networks. We show that MultiplexSAGE is capable to reconstruct both the intra-layer and the inter-layer connectivity, outperforming competing methods. Next, through a comprehensive experimental analysis, we shed light also on the performance of the embedding, both in simple and multiplex networks, showing that both the density of the graph and the randomness of the links strongly influences the quality of the embedding.

MultiplexSAGE: A Multiplex Embedding Algorithm for Inter-Layer Link Prediction

Luca Gallo;Vito Latora;Alfredo Pulvirenti
2024-01-01

Abstract

Research on graph representation learning has received great attention in recent years. However, most of the studies so far have focused on the embedding of single-layer graphs. The few studies dealing with the problem of representation learning of multilayer structures rely on the strong hypothesis that the inter-layer links are known, and this limits the range of possible applications. Here we propose MultiplexSAGE, a generalization of the GraphSAGE algorithm that allows embedding multiplex networks. We show that MultiplexSAGE is capable to reconstruct both the intra-layer and the inter-layer connectivity, outperforming competing methods. Next, through a comprehensive experimental analysis, we shed light also on the performance of the embedding, both in simple and multiplex networks, showing that both the density of the graph and the randomness of the links strongly influences the quality of the embedding.
2024
Graph embedding
graph representation learn-ing
link prediction
multiplex networks
File in questo prodotto:
File Dimensione Formato  
MultiplexSAGE.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/594350
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact