Titanium dioxide nanoparticles (TiO2-NPs) are used intensively. Thanks to their extremely small size (1–100 nm), TiO2-NPs are more absorbable by living organisms; consequently, they can cross the circulatory system and then be distributed in various organs including the reproductive organs. We have evaluated the possible toxic effect of TiO2-NPs on embryonic development and the male reproductive system using Danio rerio as an organism model. TiO2-NPs (P25, Degussa) were tested at concentrations of 1 mg/L, 2 mg/L, and 4 mg/L. TiO2-NPs did not interfere with the embryonic development of Danio rerio, however, in the male gonads the TiO2-NPs caused an alteration of the morphological/structural organization. The immunofluorescence investigation showed positivity for biomarkers of oxidative stress and sex hormone binding globulin (SHBG), both confirmed by the results of qRT-PCR. In addition, an increased expression of the gene responsible for the conversion of testosterone to dihydrotestosterone was found. Since Leydig cells are mainly involved in this activity, an increase in gene activity can be explained by the ability of TiO2-NPs to act as endocrine disruptors, and, therefore, with androgenic activity.

Titanium Dioxide Nanoparticles: Effects on Development and Male Reproductive System

Scalisi Elena Maria;Pecoraro Roberta;Fortuna Cosimo Gianluca;Brundo Maria Violetta
2023-01-01

Abstract

Titanium dioxide nanoparticles (TiO2-NPs) are used intensively. Thanks to their extremely small size (1–100 nm), TiO2-NPs are more absorbable by living organisms; consequently, they can cross the circulatory system and then be distributed in various organs including the reproductive organs. We have evaluated the possible toxic effect of TiO2-NPs on embryonic development and the male reproductive system using Danio rerio as an organism model. TiO2-NPs (P25, Degussa) were tested at concentrations of 1 mg/L, 2 mg/L, and 4 mg/L. TiO2-NPs did not interfere with the embryonic development of Danio rerio, however, in the male gonads the TiO2-NPs caused an alteration of the morphological/structural organization. The immunofluorescence investigation showed positivity for biomarkers of oxidative stress and sex hormone binding globulin (SHBG), both confirmed by the results of qRT-PCR. In addition, an increased expression of the gene responsible for the conversion of testosterone to dihydrotestosterone was found. Since Leydig cells are mainly involved in this activity, an increase in gene activity can be explained by the ability of TiO2-NPs to act as endocrine disruptors, and, therefore, with androgenic activity.
2023
Danio rerio; embryonic development; endocrine system; male infertility; testis; TiO2-NPs
File in questo prodotto:
File Dimensione Formato  
nanomaterials-13-01783.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.4 MB
Formato Adobe PDF
6.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/595410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact