Clay minerals have been used for medical purposes from ancient times. Among them, the halloysite nanotube, an aluminosilicate of the kaolin group, is an emerging nanomaterial which possesses peculiar chemical characteristics. By means of suitable modifications, such as supramolecular functionalization or covalent modifications, it is possible to obtain novel nanomaterials with tunable properties for several applications. In this context the covalent grafting of suitable organic moieties on the external surface or in the halloysite lumen has been exploited to improve the loading and release of several biologically active molecules. The resulting hybrid nanomaterials have been applied as drug carrier and delivery systems, as fillers for hydrogels, in tissue regeneration and in the gene delivery field. Furthermore the loading and release of specific molecules have been also investigated for environmental purposes. This review summarizes the main developments in the halloysite modifications in the last 20 years with a particular attention to the development in the past two years.

Chemical modification of halloysite nanotubes for controlled loading and release

Serena Riela
2018-01-01

Abstract

Clay minerals have been used for medical purposes from ancient times. Among them, the halloysite nanotube, an aluminosilicate of the kaolin group, is an emerging nanomaterial which possesses peculiar chemical characteristics. By means of suitable modifications, such as supramolecular functionalization or covalent modifications, it is possible to obtain novel nanomaterials with tunable properties for several applications. In this context the covalent grafting of suitable organic moieties on the external surface or in the halloysite lumen has been exploited to improve the loading and release of several biologically active molecules. The resulting hybrid nanomaterials have been applied as drug carrier and delivery systems, as fillers for hydrogels, in tissue regeneration and in the gene delivery field. Furthermore the loading and release of specific molecules have been also investigated for environmental purposes. This review summarizes the main developments in the halloysite modifications in the last 20 years with a particular attention to the development in the past two years.
2018
Chemical modification
Clay
Gene transfer
Kaolinite
Molecules
Nanostructured materials
Nanotubes
Targeted drug delivery
Tissue regeneration
Yarn
Biologically active molecules
Chemical characteristic
Covalent grafting
Covalent modifications
Functionalizations
Halloysite nanotubes
Hybrid nanomaterials
Tunable properties
Controlled drug delivery
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/596492
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 91
social impact