This work describes the characterization of various Fricke-Agarose-Xylenol gels (FXG) dosimeters using NMR relaxometry and MRI analysis. Using X-rays from a clinical linear accelerator (LINAC), the gels were irradiated in the dose range from 0 Gy to 20 Gy. The photon sensitivity of the FXGs was measured in terms of NMR relaxation rates; its dependence on radiation dose was determined as a function of ferrous ammonium sulfate contents (from 0.5 mM to 5 mM). Furthermore, the stability of the NMR signal was monitored over several days after irradiation. These measurements were aided by Magnetic Resonance Imaging (MRI) scans which allowed three-dimensional (3D) dose mapping. In order to maximize the MRI response, a systematic study was performed to optimize acquisition sequences and parameters. In particular, we analyzed the dependence of MRI signal on the repetition time (TR) and on the inversion time (TI) using inversion recovery sequences. The results are reported and discussed from the point of view of the dosimeter use in clinical radiotherapy. This work highlights that the optimization of additive content inside gel matrix is fundamental for optimizing photon sensitivity of these detectors. © 2014 Elsevier B.V. All rights reserved.

Correlation between ferrous ammonium sulfate concentration, sensitivity and stability of Fricke gel dosimeters exposed to clinical X-ray beams

Gallo S.;
2014-01-01

Abstract

This work describes the characterization of various Fricke-Agarose-Xylenol gels (FXG) dosimeters using NMR relaxometry and MRI analysis. Using X-rays from a clinical linear accelerator (LINAC), the gels were irradiated in the dose range from 0 Gy to 20 Gy. The photon sensitivity of the FXGs was measured in terms of NMR relaxation rates; its dependence on radiation dose was determined as a function of ferrous ammonium sulfate contents (from 0.5 mM to 5 mM). Furthermore, the stability of the NMR signal was monitored over several days after irradiation. These measurements were aided by Magnetic Resonance Imaging (MRI) scans which allowed three-dimensional (3D) dose mapping. In order to maximize the MRI response, a systematic study was performed to optimize acquisition sequences and parameters. In particular, we analyzed the dependence of MRI signal on the repetition time (TR) and on the inversion time (TI) using inversion recovery sequences. The results are reported and discussed from the point of view of the dosimeter use in clinical radiotherapy. This work highlights that the optimization of additive content inside gel matrix is fundamental for optimizing photon sensitivity of these detectors. © 2014 Elsevier B.V. All rights reserved.
2014
Agarose
Clinical photons beam
Gel dosimeter
Magnetic Resonance Imaging
Nuclear magnetic resonance relaxometry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/596794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 36
social impact