Robot visual navigation is a relevant research topic. Current deep navigation models conveniently learn the navigation policies in simulation, given the large amount of experience they need to collect. Unfortunately, the resulting models show a limited generalization ability when deployed in the real world. In this work we explore solutions to facilitate the development of visual navigation policies trained in simulation that can be successfully transferred in the real world. We first propose an efficient evaluation tool to reproduce realistic navigation episodes in simulation. We then investigate a variety of deep fusion architectures to combine a set of mid-level representations, with the aim of finding the best merge strategy that maximize the real world performances. Our experiments, performed both in simulation and on a robotic platform, show the effectiveness of the considered mid-level representations-based models and confirm the reliability of the evaluation tool. The 3D models of the environment and the code of the validation tool are publicly available at the following link: https://iplab.dmi.unict.it/EmbodiedVN/ .

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models, Benchmark and Efficient Evaluation

Rosano M.;Furnari A.;Santoro C.;Farinella G. M.
2023-01-01

Abstract

Robot visual navigation is a relevant research topic. Current deep navigation models conveniently learn the navigation policies in simulation, given the large amount of experience they need to collect. Unfortunately, the resulting models show a limited generalization ability when deployed in the real world. In this work we explore solutions to facilitate the development of visual navigation policies trained in simulation that can be successfully transferred in the real world. We first propose an efficient evaluation tool to reproduce realistic navigation episodes in simulation. We then investigate a variety of deep fusion architectures to combine a set of mid-level representations, with the aim of finding the best merge strategy that maximize the real world performances. Our experiments, performed both in simulation and on a robotic platform, show the effectiveness of the considered mid-level representations-based models and confirm the reliability of the evaluation tool. The 3D models of the environment and the code of the validation tool are publicly available at the following link: https://iplab.dmi.unict.it/EmbodiedVN/ .
2023
Real-world navigation
Reinforcement learning
Visual navigation
Visual representations fusion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/608009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact