Chromosomal instability is a hallmark of colorectal carcinogenesis and produces an accumulation of different forms of aneuploidies or broad copy number aberrations. Colorectal cancer is characterized by gain-type broad copy number aberrations, specifically in Chr20, Chr8q, Chr13 and Chr7, but their roles and mechanisms in cancer progression are not fully understood. It has been suggested that broad copy number gains might contribute to tumor development through the so-called caricature transcriptomic effect. We intend to investigate the impact of broad copy number gains on long non-coding RNAs' expression in colorectal cancer, given their well-known role in oncogenesis. The influence of such chromosomal aberrations on lncRNAs' transcriptome profile was investigated by SNP and transcriptome arrays in our series of colorectal cancer samples and cell lines. The correlation between aneuploidies and transcriptomic profiles led us to obtain a class of Over-UpT lncRNAs, which are transcripts upregulated in CRC and further overexpressed in colon tumors bearing specific chromosomal aberrations. The identified lncRNAs can contribute to a wide interaction network to establish the cancer driving effect of gain-type aneuploidies.
Gain-Type Aneuploidies Influence the Burden of Selective Long Non-Coding Transcripts in Colorectal Cancer
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Scuderi, ChiaraPrimo
;Di Bella, Virginia;Privitera, Anna Provvidenza;Giustolisi, Francesca Maria;Barresi, Vincenza
;Condorelli, Daniele FilippoUltimo
			2024-01-01
Abstract
Chromosomal instability is a hallmark of colorectal carcinogenesis and produces an accumulation of different forms of aneuploidies or broad copy number aberrations. Colorectal cancer is characterized by gain-type broad copy number aberrations, specifically in Chr20, Chr8q, Chr13 and Chr7, but their roles and mechanisms in cancer progression are not fully understood. It has been suggested that broad copy number gains might contribute to tumor development through the so-called caricature transcriptomic effect. We intend to investigate the impact of broad copy number gains on long non-coding RNAs' expression in colorectal cancer, given their well-known role in oncogenesis. The influence of such chromosomal aberrations on lncRNAs' transcriptome profile was investigated by SNP and transcriptome arrays in our series of colorectal cancer samples and cell lines. The correlation between aneuploidies and transcriptomic profiles led us to obtain a class of Over-UpT lncRNAs, which are transcripts upregulated in CRC and further overexpressed in colon tumors bearing specific chromosomal aberrations. The identified lncRNAs can contribute to a wide interaction network to establish the cancer driving effect of gain-type aneuploidies.| File | Dimensione | Formato | |
|---|---|---|---|
| Scuderi Barresi ijms-25-05538 2024.pdf accesso aperto 
											Descrizione: articolo open access
										 
											Tipologia:
											Versione Editoriale (PDF)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										3.98 MB
									 
										Formato
										Adobe PDF
									 | 3.98 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


