Several lines of evidence have extensively demonstrated that peroxynitrite plays a pivotal role in Central Nervous System (CNS) injuries. The present study was aimed at elucidating the molecular mechanism by which propofol attenuates peroxynitrite-mediated injury in the brain. Primary cultured astroglial cells were incubated for 18 h with a known peroxynitrite donor (SIN-1,3 mM) in the presence or absence of propofol (40 mM, 80 mM and 160 mM). The protective effects of propofol were evaluated by MTT cytotoxicity assay, LDH release, and caspase-3 activation by Western blot analysis. Appropriate propofol concentrations (ranging from 40 mM to 160 mM) significantly increased HO-1 expression and attenuated SIN-1-mediated cytotoxicity and caspase-3 activation. The protective effects of propofol were mitigated by the addition of tin-mesoporphirin (SnMP), a potent inhibitor of HO activity. The addition of a specific synthetic inhibitor of NF-kB abolished propofol-mediated HO-1 induction, suggesting a possible role for this nuclear transcriptional factor in our experimental conditions. These findings indicate that propofol attenuates peroxynitritemediated apoptosis in astroglial cells, a property that may be relevant in both physiological and pathological processes in the CNS.
Propofol inhibits caspase-3 in astroglial cells: role of heme oxygenase-1
ACQUAVIVA, ROSARIA;CAMPISI, Agatina;RACITI, Giuseppina;AVOLA, Roberto;VANELLA, LUCA;LI VOLTI, Giovanni
2005-01-01
Abstract
Several lines of evidence have extensively demonstrated that peroxynitrite plays a pivotal role in Central Nervous System (CNS) injuries. The present study was aimed at elucidating the molecular mechanism by which propofol attenuates peroxynitrite-mediated injury in the brain. Primary cultured astroglial cells were incubated for 18 h with a known peroxynitrite donor (SIN-1,3 mM) in the presence or absence of propofol (40 mM, 80 mM and 160 mM). The protective effects of propofol were evaluated by MTT cytotoxicity assay, LDH release, and caspase-3 activation by Western blot analysis. Appropriate propofol concentrations (ranging from 40 mM to 160 mM) significantly increased HO-1 expression and attenuated SIN-1-mediated cytotoxicity and caspase-3 activation. The protective effects of propofol were mitigated by the addition of tin-mesoporphirin (SnMP), a potent inhibitor of HO activity. The addition of a specific synthetic inhibitor of NF-kB abolished propofol-mediated HO-1 induction, suggesting a possible role for this nuclear transcriptional factor in our experimental conditions. These findings indicate that propofol attenuates peroxynitritemediated apoptosis in astroglial cells, a property that may be relevant in both physiological and pathological processes in the CNS.File | Dimensione | Formato | |
---|---|---|---|
Acquaviva_Current Neurovasc.Res._2005.pdf
solo gestori archivio
Dimensione
267.4 kB
Formato
Adobe PDF
|
267.4 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.