Composition and morphology of two types of bilayers of plasma-enhanced chemical vapor deposition hydrogened silicon nitride (SiNx:H) and polyimide (PI), as effcient barrier against moisture in SiC-based power devices, are investigated. Two types of silicon nitrides are obtained by changing the flow ratios of the SiH4 and NH3 precursors. Rutherford Backscatterered analyses show that the Si/N ratio varies from 0.6 to 0.8. Elastic recoil detection analyses show that the sample with higher nitrogen content has a higher total bound hydrogen content of 7.8 × 1017 cm−2 with respect to the 7.1 × 1017 cm−2. Fourier-transform infrared spectroscopy characterizations show Si–H group concentrations of 0.96 × 1017 and 6.86 × 1017 cm−2 and NH groups of 4.82 × 1017 and 2.28 × 1017 cm−2, respectively. Silicon nitride films with higher concentration of N–H groups show higher reactivity and permeability to water, making them less effective as a barrier layer. Atomic force microscopy analyses of a PI layer deposited on the nitride layer, SiNx:H/PI show for both type of samples a similar roughness, indicating planarization that can increase the adhesion of SiNx:H/PI and resistance to moisture. The delamination mechanism of the bilayer under pressure pot test conditions is proposed.

Effects of Hydrogen Bonding in Silicon Nitride/Polyimide Passivation Bilayer in SiC Power Devices

Antonino Scandurra
;
Giacometta Mineo;Valentina Iacono;Stefano Boscarino;Salvatore Mirabella;Francesco Ruffino;Maria Grazia Grimaldi
2024-01-01

Abstract

Composition and morphology of two types of bilayers of plasma-enhanced chemical vapor deposition hydrogened silicon nitride (SiNx:H) and polyimide (PI), as effcient barrier against moisture in SiC-based power devices, are investigated. Two types of silicon nitrides are obtained by changing the flow ratios of the SiH4 and NH3 precursors. Rutherford Backscatterered analyses show that the Si/N ratio varies from 0.6 to 0.8. Elastic recoil detection analyses show that the sample with higher nitrogen content has a higher total bound hydrogen content of 7.8 × 1017 cm−2 with respect to the 7.1 × 1017 cm−2. Fourier-transform infrared spectroscopy characterizations show Si–H group concentrations of 0.96 × 1017 and 6.86 × 1017 cm−2 and NH groups of 4.82 × 1017 and 2.28 × 1017 cm−2, respectively. Silicon nitride films with higher concentration of N–H groups show higher reactivity and permeability to water, making them less effective as a barrier layer. Atomic force microscopy analyses of a PI layer deposited on the nitride layer, SiNx:H/PI show for both type of samples a similar roughness, indicating planarization that can increase the adhesion of SiNx:H/PI and resistance to moisture. The delamination mechanism of the bilayer under pressure pot test conditions is proposed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/612109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact