A new model for cohesive interfaces is presented, based on energy and dissipation functionals and directly derived from thermodynamic principles, so that it is compatible with a continuum damage mechanics constitutive model for the continuum. Degradation of the interface is introduced through the dependency of the activation function on a driving force, dual to the internal variable of damage. The activation function of the interface is thus defined in the extended space of the tractions and of the conjugated forces, making it possible to model opening and reclosing, eventually with permanent residual relative displacements. An original feature of the model is that the friction angle degrades with the damage, modeling the reduction of the surface asperities, so that dilatancy tends to disappear. The evolution of the interface relative displacements is obtained from the conjugated dissipation functional, that is ruled by an associated flow rule.
A cohesive interface model with degrading friction coefficient
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Cuomo, Massimo
						
						
							Primo
;Contrafatto, LoredanaSecondo
;Greco, LeopoldoUltimo
			2024-01-01
Abstract
A new model for cohesive interfaces is presented, based on energy and dissipation functionals and directly derived from thermodynamic principles, so that it is compatible with a continuum damage mechanics constitutive model for the continuum. Degradation of the interface is introduced through the dependency of the activation function on a driving force, dual to the internal variable of damage. The activation function of the interface is thus defined in the extended space of the tractions and of the conjugated forces, making it possible to model opening and reclosing, eventually with permanent residual relative displacements. An original feature of the model is that the friction angle degrades with the damage, modeling the reduction of the surface asperities, so that dilatancy tends to disappear. The evolution of the interface relative displacements is obtained from the conjugated dissipation functional, that is ruled by an associated flow rule.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


