Volatility estimation and quantile regression are relevant active research areas in statistics, machine learning and econometrics. In this work, we propose two procedures to estimate the local variances in generic regression problems by using kernel smoothers. The proposed schemes can be applied in multidimensional scenarios (not just for time series analysis) and easily in a multi-output framework as well. Moreover, they enable the possibility of providing uncertainty estimation using a generic kernel smoother technique. Several numerical experiments show the benefits of the proposed methods, even compared with the benchmark techniques. One of these experiments involves a real dataset analysis.

Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation

Martino, Luca;
2024-01-01

Abstract

Volatility estimation and quantile regression are relevant active research areas in statistics, machine learning and econometrics. In this work, we propose two procedures to estimate the local variances in generic regression problems by using kernel smoothers. The proposed schemes can be applied in multidimensional scenarios (not just for time series analysis) and easily in a multi-output framework as well. Moreover, they enable the possibility of providing uncertainty estimation using a generic kernel smoother technique. Several numerical experiments show the benefits of the proposed methods, even compared with the benchmark techniques. One of these experiments involves a real dataset analysis.
2024
quantile regression
kernel smoothers
times series
heteroscedasticity
nearest neighbors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/614029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact