Multiple importance sampling (MIS) methods approximate moments of complicated distributions by drawing samples from a set of proposal distributions. Several ways to compute the importance weights assigned to each sample have been recently proposed, with the so-called deterministic mixture (DM) weights providing the best performance in terms of variance, at the expense of an increase in the computational cost. A recent work has shown that it is possible to achieve a tradeoff between variance reduction and computational effort by performing an a priori random clustering of the proposals (partial DM algorithm). In this paper, we propose a novel "heretical" MIS framework, where the clustering is performed a posteriori with the goal of reducing the variance of the importance sampling weights. This approach yields biased estimators with a potentially large reduction in variance. Numerical examples show that heretical MIS estimators can outperform, in terms of mean squared error, both the standard and the partial MIS estimators, achieving a performance close to that of DM with less computational cost.

Heretical Multiple Importance Sampling

Martino, Luca;
2016-01-01

Abstract

Multiple importance sampling (MIS) methods approximate moments of complicated distributions by drawing samples from a set of proposal distributions. Several ways to compute the importance weights assigned to each sample have been recently proposed, with the so-called deterministic mixture (DM) weights providing the best performance in terms of variance, at the expense of an increase in the computational cost. A recent work has shown that it is possible to achieve a tradeoff between variance reduction and computational effort by performing an a priori random clustering of the proposals (partial DM algorithm). In this paper, we propose a novel "heretical" MIS framework, where the clustering is performed a posteriori with the goal of reducing the variance of the importance sampling weights. This approach yields biased estimators with a potentially large reduction in variance. Numerical examples show that heretical MIS estimators can outperform, in terms of mean squared error, both the standard and the partial MIS estimators, achieving a performance close to that of DM with less computational cost.
2016
Biased estimation
deterministic mixture (DM)
Monte Carlo methods
multiple importance sampling (MIS)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/614430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact