Artificial intelligence (AI) is a multidisciplinary field intersecting computer science, cognitive science, and other disciplines, able to address the creation of systems that perform tasks generally requiring human intelligence. It consists of algorithms and computational methods that allow machines to learn from data, make decisions, and perform complex tasks, aiming to develop an intelligent system that can work independently or collaboratively with humans. Since AI technologies may help physicians in life-threatening disease prevention and diagnosis and make treatment smart and more targeted, they are spreading in health services. Indeed, humans and machines have unique strengths and weaknesses and can complement each other in providing and optimizing healthcare. However, the healthcare implementation of these technologies is related to emerging ethical and deontological issues regarding the fearsome reduction of doctors’ decision-making autonomy and acting discretion, generally strongly conditioned by cognitive elements concerning the specific clinical case. Moreover, this new operational dimension also modifies the usual allocation system of responsibilities in case of adverse events due to healthcare malpractice, thus probably imposing a redefinition of the established medico-legal assessment criteria of medical professional liability. This article outlines the new challenges arising from AI healthcare integration and the possible ways to overcome them, with a focus on Italian legal framework. In this evolving and transitional context emerges the need to balance the human dimension with the artificial one, without mutual exclusion, for a new concept of medicine “with” machines and not “of” machines.

Artificial intelligence in healthcare: an Italian perspective on ethical and medico-legal implications

Sessa F.;Salerno M.
2024-01-01

Abstract

Artificial intelligence (AI) is a multidisciplinary field intersecting computer science, cognitive science, and other disciplines, able to address the creation of systems that perform tasks generally requiring human intelligence. It consists of algorithms and computational methods that allow machines to learn from data, make decisions, and perform complex tasks, aiming to develop an intelligent system that can work independently or collaboratively with humans. Since AI technologies may help physicians in life-threatening disease prevention and diagnosis and make treatment smart and more targeted, they are spreading in health services. Indeed, humans and machines have unique strengths and weaknesses and can complement each other in providing and optimizing healthcare. However, the healthcare implementation of these technologies is related to emerging ethical and deontological issues regarding the fearsome reduction of doctors’ decision-making autonomy and acting discretion, generally strongly conditioned by cognitive elements concerning the specific clinical case. Moreover, this new operational dimension also modifies the usual allocation system of responsibilities in case of adverse events due to healthcare malpractice, thus probably imposing a redefinition of the established medico-legal assessment criteria of medical professional liability. This article outlines the new challenges arising from AI healthcare integration and the possible ways to overcome them, with a focus on Italian legal framework. In this evolving and transitional context emerges the need to balance the human dimension with the artificial one, without mutual exclusion, for a new concept of medicine “with” machines and not “of” machines.
2024
artificial intelligence
black box
decision-making process
ethics
informed consent
medical professional liability
medico-legal practice
File in questo prodotto:
File Dimensione Formato  
2024_Artificial intelligence in healthcare_an Italian perspective on ethical and medico-legal implications.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 501.28 kB
Formato Adobe PDF
501.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/618069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact