The accuracy and flexibility of Deep Convolutional Neural Networks (DCNNs) have been highly validated over the past years. However, their intrinsic opaqueness is still affecting their reliability and limiting their application in critical production systems, where the black-box behavior is difficult to be accepted. This work proposes EBAnO, an innovative explanation framework able to analyze the decision-making process of DCNNs in image classification by providing prediction-local and class-based model-wise explanations through the unsupervised mining of knowledge contained in multiple convolutional layers. EBAnO provides detailed visual and numerical explanations thanks to two specific indexes that measure the features' influence and their influence precision in the decision-making process. The framework has been experimentally evaluated, both quantitatively and qualitatively, by (i) analyzing its explanations with four state-of-the-art DCNN architectures, (ii) comparing its results with three state-of-the-art explanation strategies and (iii) assessing its effectiveness and easiness of understanding through human judgment, by means of an online survey. EBAnO has been released as open-source code and it is freely available online.

Explaining deep convolutional models by measuring the influence of interpretable features in image classification

Greco, Salvatore;
2023-01-01

Abstract

The accuracy and flexibility of Deep Convolutional Neural Networks (DCNNs) have been highly validated over the past years. However, their intrinsic opaqueness is still affecting their reliability and limiting their application in critical production systems, where the black-box behavior is difficult to be accepted. This work proposes EBAnO, an innovative explanation framework able to analyze the decision-making process of DCNNs in image classification by providing prediction-local and class-based model-wise explanations through the unsupervised mining of knowledge contained in multiple convolutional layers. EBAnO provides detailed visual and numerical explanations thanks to two specific indexes that measure the features' influence and their influence precision in the decision-making process. The framework has been experimentally evaluated, both quantitatively and qualitatively, by (i) analyzing its explanations with four state-of-the-art DCNN architectures, (ii) comparing its results with three state-of-the-art explanation strategies and (iii) assessing its effectiveness and easiness of understanding through human judgment, by means of an online survey. EBAnO has been released as open-source code and it is freely available online.
2023
Explainable artificial intelligence
Explainability
Deep convolutional neural network
Image classification
Black-box classifier
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/618227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact