Wheat landraces are traditional varieties that have evolved over generations in response to local environments and farming practices and therefore exhibit remarkable adaptability to challenging climatic conditions and low-input farming systems. While the suitability of Mediterranean landraces to non-optimal climatic conditions during anthesis and grain ripening stage have been previously assessed, the role of photosynthesis efficiency and stomatal control on this resilience remains unexplored. This study aims to evaluate the relationship between grain yield and the post-anthesis flag leaf gas exchanges of Sicilian wheat landraces under irrigated and rainfed conditions and to compare these traits to modern durum (Triticum turgidum subsp. durum) and bread wheat (T. aestivum) varieties. Results indicate that wheat landraces respond to water availability similarly to modern varieties, reducing stomatal conductance by 26.8% and net photosynthesis by 18.1% under rainfed conditions, resulting in 10.6% lower grain yield compared to irrigated conditions. However, some landraces demonstrate comparable or even higher flag leaf net photosynthesis rates and lower transpiration levels, leading to higher yields in both rainfed and irrigated conditions, confirming their value as a source of gene pool for wheat breeding programs in drought-prone Mediterranean regions.

Yield Response and Leaf Gas Exchange of Sicilian Wheat Landraces

Sebastiano Andrea Corinzia;Paolo Caruso;Alessio Scandurra;Umberto Anastasi;Salvatore Luciano Cosentino;Giorgio Testa
2024-01-01

Abstract

Wheat landraces are traditional varieties that have evolved over generations in response to local environments and farming practices and therefore exhibit remarkable adaptability to challenging climatic conditions and low-input farming systems. While the suitability of Mediterranean landraces to non-optimal climatic conditions during anthesis and grain ripening stage have been previously assessed, the role of photosynthesis efficiency and stomatal control on this resilience remains unexplored. This study aims to evaluate the relationship between grain yield and the post-anthesis flag leaf gas exchanges of Sicilian wheat landraces under irrigated and rainfed conditions and to compare these traits to modern durum (Triticum turgidum subsp. durum) and bread wheat (T. aestivum) varieties. Results indicate that wheat landraces respond to water availability similarly to modern varieties, reducing stomatal conductance by 26.8% and net photosynthesis by 18.1% under rainfed conditions, resulting in 10.6% lower grain yield compared to irrigated conditions. However, some landraces demonstrate comparable or even higher flag leaf net photosynthesis rates and lower transpiration levels, leading to higher yields in both rainfed and irrigated conditions, confirming their value as a source of gene pool for wheat breeding programs in drought-prone Mediterranean regions.
2024
grain yield
net assimilation rate
leaf transpiration
stomatal conductance
instant water use efficiency
Mediterranean
File in questo prodotto:
File Dimensione Formato  
agronomy-14-01038-v2-1.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.63 MB
Formato Adobe PDF
3.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/619769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact