Context. The motion of stars has been used to reveal details of the complex history of the Milky Way, in constant interaction with its environment. Nevertheless, to reconstruct the Galactic history puzzle in its entirety, the chemo-physical characterisation of stars is essential. Previous Gaia data releases were supported by a smaller, heterogeneous, and spatially biased mixture of chemical data from ground-based observations. Aims. Gaia Data Release 3 opens a new era of all-sky spectral analysis of stellar populations thanks to the nearly 5.6 million stars observed by the Radial Velocity Spectrometer (RVS) and parametrised by the GSP-Spec module. In this work, we aim to demonstrate the scientific quality of Gaia s Milky Way chemical cartography through a chemo-dynamical analysis of disc and halo populations. Methods. Stellar atmospheric parameters and chemical abundances provided by Gaia DR3 spectroscopy are combined with DR3 radial velocities and EDR3 astrometry to analyse the relationships between chemistry and Milky Way structure, stellar kinematics, and orbital parameters. Results. The all-sky Gaia chemical cartography allows a powerful and precise chemo-dynamical view of the Milky Way with unprecedented spatial coverage and statistical robustness. First, it reveals the strong vertical symmetry of the Galaxy and the flared structure of the disc. Second, the observed kinematic disturbances of the disc seen as phase space correlations and kinematic or orbital substructures are associated with chemical patterns that favour stars with enhanced metallicities and lower [α/Fe] abundance ratios compared to the median values in the radial distributions. This is detected both for young objects that trace the spiral arms and older populations. Several α, iron-peak elements and at least one heavy element trace the thin and thick disc properties in the solar cylinder. Third, young disc stars show a recent chemical impoverishment in several elements. Fourth, the largest chemo-dynamical sample of open clusters analysed so far shows a steepening of the radial metallicity gradient with age, which is also observed in the young field population. Finally, the Gaia chemical data have the required coverage and precision to unveil galaxy accretion debris and heated disc stars on halo orbits through their [α/Fe] ratio, and to allow the study of the chemo-dynamical properties of globular clusters. Conclusions. Gaia DR3 chemo-dynamical diagnostics open new horizons before the era of ground-based wide-field spectroscopic surveys. They unveil a complex Milky Way that is the outcome of an eventful evolution, shaping it to the present day. © 2023 The Authors.
Gaia Data Release 3: Chemical cartography of the Milky Way
Recio-Blanco A.; Kordopatis G.; De Laverny P.; Palicio P. A.; Spagna A.; Spina L.; Katz D.; Re Fiorentin P.; Poggio E.; McMillan P. J.; Vallenari A.; Lattanzi M. G.; Seabroke G. M.; Casamiquela L.; Bragaglia A.; Antoja T.; Bailer-Jones C. A. L.; Schultheis M.; Andrae R.; Fouesneau M.; Cropper M.; Cantat-Gaudin T.; Bijaoui A.; Heiter U.; Brown A. G. A.; Prusti T.; De Bruijne J. H. J.; Arenou F.; Babusiaux C.; Biermann M.; Creevey O. L.; Ducourant C.; Evans D. W.; Eyer L.; Guerra R.; Hutton A.; Jordi C.; Klioner S. A.; Lammers U. L.; Lindegren L.; Luri X.; Mignard F.; Panem C.; Pourbaix D.; Randich S.; Sartoretti P.; Soubiran C.; Tanga P.; Walton N. A.; Bastian U.; Drimmel R.; Jansen F.; Van Leeuwen F.; Bakker J.; Cacciari C.; Castaneda J.; De Angeli F.; Fabricius C.; Fremat Y.; Galluccio L.; Guerrier A.; Masana E.; Messineo R.; Mowlavi N.; Nicolas C.; Nienartowicz K.; Pailler F.; Panuzzo P.; Riclet F.; Roux W.; Sordo R.; Thevenin F.; Gracia-Abril G.; Portell J.; Teyssier D.; Altmann M.; Audard M.; Bellas-Velidis I.; Benson K.; Berthier J.; Blomme R.; Burgess P. W.; Busonero D.; Busso G.; Canovas H.; Carry B.; Cellino A.; Cheek N.; Clementini G.; Damerdji Y.; Davidson M.; De Teodoro P.; Nunez Campos M.; Delchambre L.; Dell Oro A.; Esquej P.; Fernandez-Hernandez J.; Fraile E.; Garabato D.; Garcia-Lario P.; Gosset E.; Haigron R.; Halbwachs J. -L.; Hambly N. C.; Harrison D. L.; Hernandez J.; Hestroffer D.; Hodgkin S. T.; Holl B.; Janen K.; Jevardat De Fombelle G.; Jordan S.; Krone-Martins A.; Lanzafame A. C. ;Loffler W.; Marchal O.; Marrese P. M.; Moitinho A.; Muinonen K.; Osborne P.; Pancino E.; Pauwels T.; Reyle C.; Riello M.; Rimoldini L.; Roegiers T.; Rybizki J.; Sarro L. M.; Siopis C.; Smith M.; Sozzetti A.; Utrilla E.; Van Leeuwen M.; Abbas U.; Abraham P.; Abreu Aramburu A.; Aerts C.; Aguado J. J.; Ajaj M.; Aldea-Montero F.; Altavilla G.; Alvarez M. A.; Alves J.; Anders F.; Anderson R. I.; Anglada Varela E.; Baines D.; Baker S. G.; Balaguer-Nunez L.; Balbinot E.; Balog Z.; Barache C.; Barbato D.; Barros M.; Barstow M. A.; Bartolome S.; Bassilana J. -L.; Bauchet N.; Becciani U. ;Bellazzini M.; Berihuete A.; Bernet M.; Bertone S.; Bianchi L.; Binnenfeld A.; Blanco-Cuaresma S.; Boch T.; Bombrun A.; Bossini D.; Bouquillon S.; Bramante L.; Breedt E.; Bressan A.; Brouillet N.; Brugaletta E. ;Bucciarelli B.; Burlacu A.; Butkevich A. G.; Buzzi R.; Caffau E.; Cancelliere R.; Carballo R.; Carlucci T.; Carnerero M. I.; Carrasco J. M.; Castellani M.; Castro-Ginard A.; Chaoul L.; Charlot P.; Chemin L.; Chiaramida V.; Chiavassa A.; Chornay N.; Comoretto G.; Contursi G.; Cooper W. J.; Cornez T.; Cowell S.; Crifo F.; Crosta M.; Crowley C.; Dafonte C.; Dapergolas A.; David P.; De Luise F.; De March R.; De Ridder J.; De Souza R.; De Torres A.; Del Peloso E. F.; Del Pozo E.; Delbo M.; Delgado A.; Delisle J. -B.; Demouchy C.; Dharmawardena T. E.; Di Matteo P.; Diakite S.; Diener C.; Distefano E. ;Dolding C.; Edvardsson B.; Enke H.; Fabre C.; Fabrizio M.; Faigler S.; Fedorets G.; Fernique P.; Figueras F.; Fournier Y.; Fouron C.; Fragkoudi F.; Gai M.; Garcia-Gutierrez A.; Garcia-Reinaldos M.; Garcia-Torres M.; Garofalo A.; Gavel A.; Gavras P.; Gerlach E.; Geyer R.; Giacobbe P.; Gilmore G.; Girona S.; Giuffrida G.; Gomel R.; Gomez A.; Gonzalez-Nunez J.; Gonzalez-Santamaria I.; Gonzalez-Vidal J. J.; Granvik M.; Guillout P.; Guiraud J.; Gutierrez-Sanchez R.; Guy L. P.; Hatzidimitriou D.; Hauser M.; Haywood M.; Helmer A.; Helmi A.; Sarmiento M. H.; Hidalgo S. L.; Haadczuk N.; Hobbs D.; Holland G.; Huckle H. E.; Jardine K.; Jasniewicz G.; Jean-Antoine Piccolo A.; Jimenez-Arranz A.; Juaristi Campillo J.; Julbe F.; Karbevska L.; Kervella P.; Khanna S.; Korn A. J.; Kospal A.; Kostrzewa-Rutkowska Z.; Kruszy K.; Kun M.; Laizeau P.; Lambert S.; Lanza A. F.; Lasne Y.; Le Campion J. -F.; Lebreton Y.; Lebzelter T.; Leccia S. ;Leclerc N.; Lecoeur-Taibi I.; Liao S.; Licata E. L.; Lindstrom H. E. P.; Lister T. A.; Livanou E.; Lobel A.; Lorca A.; Loup C.; Madrero Pardo P.; Magdaleno Romeo A.; Managau S.; Mann R. G.; Manteiga M.; Marchant J. M.; Marconi M.; Marcos J.; Marcos Santos M. M. S.; Marin Pina D.; Marinoni S.; Marocco F.; Marshall D. J.; Martin Polo L.; Martin-Fleitas J. M.; Marton G.; Mary N.; Masip A.; Massari D.; Mastrobuono-Battisti A.; Mazeh T.; Messina S.; Michalik D.; Millar N. R.; Mints A.; Molina D.; Molinaro R.; Molnar L.; Monari G.; Monguio M.; Montegriffo P.; Montero A.; Mor R.; Mora A.; Morbidelli R.; Morel T.; Morris D.; Muraveva T.; Murphy C. P.; Musella I.; Nagy Z.; Noval L.; Ocana F.; Ogden A.; Ordenovic C.; Osinde J. O.; Pagani C.; Pagano I.; Palaversa L.; Pallas-Quintela L.; Panahi A.; Payne-Wardenaar S.; Penalosa Esteller X.; Penttila A.; Pichon B.; Piersimoni A. M.; Pineau F. -X.; Plachy E.; Plum G.; Prsa A.; Pulone L.; Racero E.; Ragaini S.; Rainer M.; Raiteri C. M.; Ramos P.; Ramos-Lerate M.; Regibo S.; Richards P. J.; Rios Diaz C.; Ripepi V.; Riva A.; Rix H. -W.; Rixon G.; Robichon N.; Robin A. C.; Robin C.; Roelens M.; Rogues H. R. O.; Rohrbasser L.; Romero-Gomez M.; Rowell N.; Royer F.; Ruz Mieres D.; Rybicki K. A.; Sadowski G.; Saez Nunez A.; Sagrista Selles A.; Sahlmann J.; Salguero E.; Samaras N.; Sanchez Gimenez V.; Sanna N.; Santovena R.; Sarasso M.; Sciacca E. ;Segol M.; Segovia J. C.; Segransan D.; Semeux D.; Shahaf S.; Siddiqui H. I.; Siebert A.; Siltala L.; Silvelo A.; Slezak E.; Slezak I.; Smart R. L.; Snaith O. N.; Solano E.; Solitro F.; Souami D.; Souchay J.; Spoto F.; Steele I. A.; Steidelmuller H.; Stephenson C. A.; Suveges M.; Surdej J.; Szabados L.; Szegedi-Elek E.; Taris F.; Taylor M. B.; Teixeira R.; Tolomei L.; Tonello N.; Torra F.; Torra J.; Torralba Elipe G.; Trabucchi M.; Tsounis A. T.; Turon C.; Ulla A.; Unger N.; Vaillant M. V.; Van Dillen E.; Van Reeven W.; Vanel O.; Vecchiato A.; Viala Y.; Vicente D.; Voutsinas S.; Weiler M.; Wevers T.; Wyrzykowski L.; Yoldas A.; Yvard P.; Zhao H.; Zorec J.; Zucker S.; Zwitter T.
2023-01-01
Abstract
Context. The motion of stars has been used to reveal details of the complex history of the Milky Way, in constant interaction with its environment. Nevertheless, to reconstruct the Galactic history puzzle in its entirety, the chemo-physical characterisation of stars is essential. Previous Gaia data releases were supported by a smaller, heterogeneous, and spatially biased mixture of chemical data from ground-based observations. Aims. Gaia Data Release 3 opens a new era of all-sky spectral analysis of stellar populations thanks to the nearly 5.6 million stars observed by the Radial Velocity Spectrometer (RVS) and parametrised by the GSP-Spec module. In this work, we aim to demonstrate the scientific quality of Gaia s Milky Way chemical cartography through a chemo-dynamical analysis of disc and halo populations. Methods. Stellar atmospheric parameters and chemical abundances provided by Gaia DR3 spectroscopy are combined with DR3 radial velocities and EDR3 astrometry to analyse the relationships between chemistry and Milky Way structure, stellar kinematics, and orbital parameters. Results. The all-sky Gaia chemical cartography allows a powerful and precise chemo-dynamical view of the Milky Way with unprecedented spatial coverage and statistical robustness. First, it reveals the strong vertical symmetry of the Galaxy and the flared structure of the disc. Second, the observed kinematic disturbances of the disc seen as phase space correlations and kinematic or orbital substructures are associated with chemical patterns that favour stars with enhanced metallicities and lower [α/Fe] abundance ratios compared to the median values in the radial distributions. This is detected both for young objects that trace the spiral arms and older populations. Several α, iron-peak elements and at least one heavy element trace the thin and thick disc properties in the solar cylinder. Third, young disc stars show a recent chemical impoverishment in several elements. Fourth, the largest chemo-dynamical sample of open clusters analysed so far shows a steepening of the radial metallicity gradient with age, which is also observed in the young field population. Finally, the Gaia chemical data have the required coverage and precision to unveil galaxy accretion debris and heated disc stars on halo orbits through their [α/Fe] ratio, and to allow the study of the chemo-dynamical properties of globular clusters. Conclusions. Gaia DR3 chemo-dynamical diagnostics open new horizons before the era of ground-based wide-field spectroscopic surveys. They unveil a complex Milky Way that is the outcome of an eventful evolution, shaping it to the present day. © 2023 The Authors.
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Sei sicuro che questo prodotto debba essere cancellato?
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande. La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.