This paper presents recent results on CMOS integrated circuits for automotive radar sensor applications in the 77 GHz frequency band. It is well demonstrated that nano-scale CMOS technologies are the best solution for the implementation of low-cost and high-performance mm-wave radar sensors since they provide high integration level besides supporting high-speed digital processing. The present work is mainly focused on the RF front-end and summarizes the most stringent requirements of both short/medium- and long-range radar applications. After a brief introduction of the adopted technology, the paper addresses the critical building blocks of the receiver and transmitter chain while discussing crucial design aspects to meet the final performance. Specifically, effective circuit topologies are presented, which concern mixer, variable-gain amplifier, and filter for the receiver, as well as frequency doubler and power amplifier for the transmitter. Moreover, a voltage-controlled oscillator for a PLL efficiently covering the two radar bands is described. Finally, the circuit description is accompanied by experimental results of an integrated implementation in a 28 nm fully depleted silicon-on-insulator CMOS technology.

CMOS IC Solutions for the 77 GHz Radar Sensor in Automotive Applications

Giuseppe PALMISANO
2024-01-01

Abstract

This paper presents recent results on CMOS integrated circuits for automotive radar sensor applications in the 77 GHz frequency band. It is well demonstrated that nano-scale CMOS technologies are the best solution for the implementation of low-cost and high-performance mm-wave radar sensors since they provide high integration level besides supporting high-speed digital processing. The present work is mainly focused on the RF front-end and summarizes the most stringent requirements of both short/medium- and long-range radar applications. After a brief introduction of the adopted technology, the paper addresses the critical building blocks of the receiver and transmitter chain while discussing crucial design aspects to meet the final performance. Specifically, effective circuit topologies are presented, which concern mixer, variable-gain amplifier, and filter for the receiver, as well as frequency doubler and power amplifier for the transmitter. Moreover, a voltage-controlled oscillator for a PLL efficiently covering the two radar bands is described. Finally, the circuit description is accompanied by experimental results of an integrated implementation in a 28 nm fully depleted silicon-on-insulator CMOS technology.
2024
CMOS
radar sensor
mm-wave transmitter
mm-wave receiver
electromagnetic (EM) simulations
frequency doubler
transformer-based VCO
fully depleted (FD) silicon-on-insulator (SOI)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/622949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact