We prove local Lipschitz regularity for local minimisers ofWe prove local Lipschitz regularity for local minimisers ofW-1,W-1 (Omega) (sic) v bar right arrow integral(Omega) F(Dv) dxwhere Omega subset of R-N, N >= 2 and F : R-N -> R is a quasiuniformly convex integrand in the sense of Kovalev and Maldonado (Ill J Math 49:1039-1060, 2005), i. e. a convex C-1-function such that the ratio between themaximum andminimum eigenvalues of (DF)-F-2 is essentially bounded. This class of integrands includes the standard singular/degenerate functions F(z) = vertical bar z vertical bar(p) for any p > 1 and arises as the closure, with respect to a natural convergence, of the strongly elliptic integrands of the Calculus of Variations.
Lipschitz regularity for solutions of a general class of elliptic equations
Mosconi, Sunra
2024-01-01
Abstract
We prove local Lipschitz regularity for local minimisers ofWe prove local Lipschitz regularity for local minimisers ofW-1,W-1 (Omega) (sic) v bar right arrow integral(Omega) F(Dv) dxwhere Omega subset of R-N, N >= 2 and F : R-N -> R is a quasiuniformly convex integrand in the sense of Kovalev and Maldonado (Ill J Math 49:1039-1060, 2005), i. e. a convex C-1-function such that the ratio between themaximum andminimum eigenvalues of (DF)-F-2 is essentially bounded. This class of integrands includes the standard singular/degenerate functions F(z) = vertical bar z vertical bar(p) for any p > 1 and arises as the closure, with respect to a natural convergence, of the strongly elliptic integrands of the Calculus of Variations.File | Dimensione | Formato | |
---|---|---|---|
s00526-023-02632-1.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
627.54 kB
Formato
Adobe PDF
|
627.54 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.