Due to climate change and rapid urban sprawl, central Mediterranean regions are subjected to short but intensive storm events resulting in a significant increase of flow rates and runoff volumes in low-lying coastal urban areas. Within the framework of green urban infrastructures (GUIs), a suitable combination of Nature-Based Solutions (NBS) with traditional grey infrastructures should be adopted to mitigate flood risk effects in urban and sub-urban areas contributing at the same time to achieve multiple benefits for both the environment and the community. The aim of this study is (i) to evaluate flood hazard maps for identifying the areas within a Sicilian hydrological river basin (Toscano catchment) with a high risk of flooding by implementing the HEC-RAS model at catchment scale; (ii) to quantify the peak flow and floodplain area reduction; (iii) to assess the effectiveness of small-scale NBS (green roofs, porous pavements, rain gardens and rain barrel), in terms of peak flow and runoff volume reductions, at urban block scale by using the EPA SWMM model Model simulations are performed integrating the hydraulic (HEC-RAS) and hydrological (EPA SWMM) models for return periods of 10, 50 and 200 years. The results showed that the estimated peak flow (m3 s−1) obtained from the simulations performed at catchment scale for each T in the current scenario (without NBS) using HEC-RAS and EPA SWMM models are very close to each other (R2 = 0.99). In addition, the utopian scenario simulation showed the HEC-RAS model sensitivity to CN calibration achieving a peak flow reduction up to about 60% with the floodplain area decreasing up to about 17%. Finally, the model EPA SWMM shows its sensitivity to NBS implementation at urban block scale with a peak flow reduction up to about 16% and a runoff volume (mm) reduction up to about 24%. These reductions decrease as T increases with a higher NBS mitigation effects for the lowest T. The results highlighted that the integration of NBS in urban areas could have hydrological and hydraulic positive effects, particularly in terms of peak flow and runoff volume reduction. Furthermore, the results suggest that small-scale NBS have a potential to be effective to smaller rainfall events, but a combination with large-scale NBS is necessary to cope with extreme events.
The role of Nature-Based Solutions for the water flow management in a Mediterranean urban area
Liviana Sciuto
;Feliciana Licciardello;Vincenzo Scavera;Emanuela Rita Giuffrida;Giuseppe Cirelli
2024-01-01
Abstract
Due to climate change and rapid urban sprawl, central Mediterranean regions are subjected to short but intensive storm events resulting in a significant increase of flow rates and runoff volumes in low-lying coastal urban areas. Within the framework of green urban infrastructures (GUIs), a suitable combination of Nature-Based Solutions (NBS) with traditional grey infrastructures should be adopted to mitigate flood risk effects in urban and sub-urban areas contributing at the same time to achieve multiple benefits for both the environment and the community. The aim of this study is (i) to evaluate flood hazard maps for identifying the areas within a Sicilian hydrological river basin (Toscano catchment) with a high risk of flooding by implementing the HEC-RAS model at catchment scale; (ii) to quantify the peak flow and floodplain area reduction; (iii) to assess the effectiveness of small-scale NBS (green roofs, porous pavements, rain gardens and rain barrel), in terms of peak flow and runoff volume reductions, at urban block scale by using the EPA SWMM model Model simulations are performed integrating the hydraulic (HEC-RAS) and hydrological (EPA SWMM) models for return periods of 10, 50 and 200 years. The results showed that the estimated peak flow (m3 s−1) obtained from the simulations performed at catchment scale for each T in the current scenario (without NBS) using HEC-RAS and EPA SWMM models are very close to each other (R2 = 0.99). In addition, the utopian scenario simulation showed the HEC-RAS model sensitivity to CN calibration achieving a peak flow reduction up to about 60% with the floodplain area decreasing up to about 17%. Finally, the model EPA SWMM shows its sensitivity to NBS implementation at urban block scale with a peak flow reduction up to about 16% and a runoff volume (mm) reduction up to about 24%. These reductions decrease as T increases with a higher NBS mitigation effects for the lowest T. The results highlighted that the integration of NBS in urban areas could have hydrological and hydraulic positive effects, particularly in terms of peak flow and runoff volume reduction. Furthermore, the results suggest that small-scale NBS have a potential to be effective to smaller rainfall events, but a combination with large-scale NBS is necessary to cope with extreme events.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0925857424002003-main.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
588.3 kB
Formato
Adobe PDF
|
588.3 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.