We briefly discuss the state of the art on the anomalous dynamics of the Hamiltonian mean field (HMF) model. We stress the important role of the initial conditions for understanding the microscopic nature of the intriguing metastable quasi -stationary states (QSS) observed in the model and the connections to Tsallis statistics and glassy dynamics. We also present new results on the existence of metastable states in the Kuramoto model and discuss the similarities with those found in the HMF model. The existence of metastability seems to be quite a common phenomenon in fully coupled systems, whose origin could be also interpreted as a dynamical mechanism preventing or hindering synchronization.

Metastability in the Hamiltonian Mean Field model and Kuramoto model

PLUCHINO, ALESSANDRO;RAPISARDA, Andrea
2006

Abstract

We briefly discuss the state of the art on the anomalous dynamics of the Hamiltonian mean field (HMF) model. We stress the important role of the initial conditions for understanding the microscopic nature of the intriguing metastable quasi -stationary states (QSS) observed in the model and the connections to Tsallis statistics and glassy dynamics. We also present new results on the existence of metastable states in the Kuramoto model and discuss the similarities with those found in the HMF model. The existence of metastability seems to be quite a common phenomenon in fully coupled systems, whose origin could be also interpreted as a dynamical mechanism preventing or hindering synchronization.
metastability; Kuramoto model; quasi-stationary states
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/6365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact